
.))

•

Training and Education
Presents:

OS-9 Advanced Topics

)

Process Scheduling Definitions

tick - the smallest measurable amount of time on the OS-9 system. By default, the OS-9 system
is configured to receive 100 clock interrupts (ticks) per second. This tick rate may be changed provided
that your hardware supports other values and you have source code to your system's clock device
driver. If the tick rate is changed, th~ change does not take effect until the next reboot.

slice - this is an amount of time, measured in ticks. A slice is the amount of time a process may
remain in the CPU (execute) before the kernel decides to perform a context switch. (Note that this is
without regard to pre-emption, and that although a context switch takes place , sometimes the process
leaving the CPU is also the process to run next.) By default there are two ticks per slice. This value may
be changed on the fly by modifying a system global and may be changed on a quasi-permanent basis by
modifying the init module used to boot with.

When a process is placed in the CPU to resume (or begin) execution, it will stay there for the
number of ticks specified by the system global d_tslice . After this time expires, the kernel causes a
context switch, allowing the next process to begin its "time slice".

Section: 0S-9 Advanced Topics

)

65

,I

,,

""

\ ,

I')

Process Scheduling

OS-9 uses four methods of determining what process to run: round robin, priority, aging, and
pre-emption. These scheduling mechanisms are all used in conjunction with one another.

Round robin: by itself, this form of process scheduling is a fair arbiter which basically says that
every process gets an equal tum in the CPU, and when that tum expires, it goes to the end of the line of
processes that want the CPU.

Priority: this form of scheduling , used by itself, requires that the process with the highest priority
is allowed to run as long as it wants, and as long as it has the highest priority no other process can get
any CPU time.

Aging: this is a mechanism that must work with priority. Aging says that when process A gets a
time slice (due to its high priority), all other processes age by .one. That is, their priorities artificially
increase by one.

Pre-emption : this is the act of a non-running process forcing the running process from the CPU.

Section: OS-9 Advanced Topics

~

~~

66

)

The Process Scheduling Function

Assume that all processes are eligible for the cpu at all times. When a process is created, it is
placed within the active queue. The active queue is a line of processes that want CPU time. This queue
is kept sorted in order of the next process to enter the CPU to the last. The process being placed into the
queue may or may not be placed at the end of the queue; priority takes a role.

Every process that enters the active queue is assigned an age equal to the process' priority. The
sort of the queue is thus based on each process' age rather than directly on its priority. The age of the
process being inserted is compared with the ages of processes already in the queue, from the rear and
moving forward. When the age of a process already in the queue is less than that of the process being
inserted, the process being inserted moves forward . When the age of the process already in the queue is
equal to the age of the process being inserted (or exceeds its age) the process being inserted is destined
to fall behind this "equal or greater" process. When the kernel needs a process to execute, it takes the
process in the front of the queue; this process has the highest (or, oldest) age.

When a process' time slice expires, it is given an age again equal to its priority, and shuffled into
the active queue. Now, whatever process is in the front of the queue gets to run. (Yes, it may even be
the same process.) All processes in the queue at the time of the context switch (that were not a part of
the switch) are aged by one. (Their ages all increase by one.)

Section: OS-9 Advanced Topics 67

)
•'

Process Scheduling Example

Assume there are three processes, A, B, and C, with respective priorities 130, 128, and 128.
Also, assume they all enter the active queue in alphabetical order. Initially, there will be no process in
the CPU, and the active queue will contain in order A, B, and C with respective ages at 130, 128, and
128. The system will have the follo~ing active queue layouts as time progresses:

Table 7: Process Scheduling Dynamics

CPU I Active Queue

none A130 B12s C12s

A A130 B129 C129

A B130 C130 A130

B C131 A131 B12s

C A132 B129 C12s

A B130 A130 C129

B A131 C130 B12s

A I C131 A130 B129

Section : OS-9 Advanced Topics 68

)

Process Queues

Processes generally do not spend much time in the active queue since very few processes actu­
ally want the CPU 100% of the time. (This was the assumption made in the previous examples .) For
example, when a process sleeps, waits for child processes to terminate, or waits for favorable sema­
phores and events, they cannot use .the CPU, so there are queues other than the active queue to place
these processes .

Active queue: This queue holds the process descriptors of all processes that are ready to use the
CPU. This list is sorted in order of the next process to enter the CPU to the last.

Sleep queue: This queue holds sleeping processes which may either be awakened through
receiving a signal or sleeping their allotted time. It is kept sorted in order of the next process to be (nat­
urally) awakened to the last, followed by processes that have no specific wakeup time.

Wait queue: This queue holds processes that are waiting for child processes to terminate. This is
an unsorted list since the kernel cannot tell which processes will leave the queue first.

Section: 0S-9 Advanced Topics 69

)

.

)

Preemption

Preemption is defined to be the act of one process forcing another out of the CPU, typically so
that this preempting process can execute. Under OS-9, only a relatively high priority process can pre­
empt a relatively low priority process. Preemption can only occur at the time the higher priority process
enters the active queue. This proces~ may enter the active queue either by receiving a signal, waking up
from a timed sleep, or any other means of activation (such as being created.)

If a process is activated and, at this time, its priority does not allow it to preempt the current run­
ning process, the activated process will enter the active queue to be placed wherever its age (set equal
to its priority) calls for with regards to other process in the active queue. Thus, a process receiving a
signal gets no special privilege unless it can preempt the current running process. When a process does
force another to prematurely leave the CPU, the preempting process has no guarantee of entering the
CPU immediately; rather, its position within the active queue determines the next process to enter.

Section: OS-9 Advanced Topics

)

70

)

System Globals

The operating system kernel, just Like any other program, maintains a set of global variables.
Since the kernel's globals are accessible to all processes running on the system, these variables are
called system globals. These system globals may be viewed by all processes, and, super user processes
may change certain globals. (A super user process is any process owned by group zero.) We view all
globals on the system by typing vos globs at the shell prompt. ,

Within the context of process scheduling, there are three globals of particular interest: d_tslice ,
d_minpty, and d_maxage. ·

d_tslice, as previously discussed, has a default value of two. This means that a process has two
clock interrupts of execution time before the kernel can decide to perform a context switch.

d_minpty specifies the minimum priority a process must have in order to be scheduled for execu­
tion time. When this value is non-zero, the system will neither consider for execution nor age those
processes with a priority below d_minpty. This is true even if there are no remaining processes with
priorities equal to or greater than d_minpty !

Section: OS-9 Advanced Topics 71

))

d_maxage determines the highest value any process may age to. Setting d_maxage to one will
implement a strict priority based system since no processes can age. When d_maxage is zero, a pro­
cesses maximum age is 65535; when d_maxage is 100 a processes maximum age is 99. Note, however,
that the lowest a process' age can ever be is equal to its priority, no matter how low d_maxage is.

Viewing and Changing System Globals

There are two C functions for dealing with system globals: _os_getsys() and _os_setsys(). To
use these functions, it is advised th.at you include two header files: <sysglob.h> and <stddef.h>. (The
former describes the structure of the system globals while the latter contains a macro, offsetof(), which
allows us to get the offset to an element within a structure.)

error_code _os_getsys(u_int32 offset, u_int32 size, glob_buff
*yourvar);

error_code _ os _ setsys(u _int32 offset, u_int32 size, glob_buff
yourvar);

The program below demonstrates the viewing and changing of system globals.

#include <stdio.h>
#include <stddef.h>
#include <sysglob.h>
#include <types.h>
#include <errno.h>

Section: OS-9 Advanced Topics

)
,'

72

~.

I

(I l

main ()
{

}

glob_buff d_maxage;
errno = _os_getsys(offsetof(sysglobs, d_ maxage) ,

sizeof(d_maxage.wrd),&d_maxage); •
if (errno != 0) {

}

fprintf(stderr,"Error getting d_maxage!\n");
_os_exit(errno);

printf ("Current · value of d_maxage : %d\n", d_maxage. wrd);
printf("New value: ");
scanf ("%d", &d_maxage. wrd);

errno = _os_setsys(offsetof(sysglobs,d_maxage),
sizeof(d_maxage.wrd),d_maxage);

if (errno != 0) {

}

fprintf(stderr,"Error setting d_maxage! Are you SUPER?\n");
_os_exit(errno);

printf("It has been done. Good bye!\n");

A few other global s of interest: d_ticks, d_tcksec .

Section: OS-9 Advanced Topics

·r

\
I

73

Memory Management

Under OS-9, all processes share a common address space consisting of a single memory map.
Virtual memory is not supported in any form as it would impose a large tax on the number of CPU
cycles available for your programs. (Lack of virtual memory means we cannot perform "garbage col­
lection" on memory in order to re~uce apparent fragmentation.) Although we do not support virtual
memory, we do provide some support for memory management hardware. The system extension ssm
(system security module) utilizes an MMU to insure that a process can only access memory it has been
granted . This improves security on a system as well as prevents most processes from causing harm to
other processes or the system itself.

OS-9 memory does not have to be contiguous, but each block of memory does have to be known
to the system at boot time. (The system learns of areas of memory by looking at the init module, whose
source code describes the various areas.) Of course, if memory on the system is not contiguous, the sys­
tem memory will begin to fragment.

. The command mfree shows how much memory is currently available. This number is not very
useful, however, as fragmentation is not addressed. The "-e" option to mfree changes the output to
include all individual fragments of free memory as well as the amount of memory found at boot time.

Section: OS-9 Advanced Topics 74

)

,,

~

Memory Allocation

There are a number of calls available for the allocation of memory. Some of the major calls are
presented here.

memptr = malloc(size): The' malloc() function is a general purpose memory allocation call. It is
the defacto standard for memory allocation in C. This does not necessarily make it the best choice , but
it is the most common choice . In general terms, malloc is much more than an allocation call, it is a hook
into a mini allocation system. This function does not always extract memory from the system, since
when it does get new memory from the system it generally gets more than is needed. This malloc sys­
tem keeps detailed records of what memory has been received from the system but not yet allocated to
the user, and often grants memory from this area. Memory granted through malloc() is returnable
through the free() function.

When malloc does get memory from the system, it gets memory in increments of the system's
minimum block size (4k by default.) A pointer to the number of bytes requested by the user is returned
when this call succeeds, and a null pointer is returned when it fails. A related call, _mallocmin(), is
used to change the number of bytes requested by malloc from the system. This change must still be a
multiple of the system's minimum block size. Larger minimums can help reduce memory fragmenta­
tion at the expense of tying up more memory than is needed.

Section: 0S-9 Advanced Topics

~

~

75

i

.I

,.

"'

) ,,

error_code _ os9 _ srqmem (u_int32 *size, void **ptr);
This call allows you to al l ocate memory from the system
requiring less overhead from the kerne l than malloc().

:• r:

in a manner

error_code _ os _ srqmem (u_int32 *size, void **ptr, u_int32 color);
Similar to the call above, this call a l lows you to specify which memory
region the memory should come from.

error _ code _ os _ srtmem (u_int32 size, void *ptr);
This call allows you to return memory granted via one of the above
calls.

error_code _ os _ mem(.. .);
Does not work! Only present for compile compatibility with previous
versions of the operating system.

Sect ion: OS-9 Advanced Topics

\

~

~

76

.. ,,) ..

Subroutine Modules (0S-9)

The subroutine module is one of two methods provided for placing code in an external location.
They provide a simple means of implementing a shared library which is dynamically linked. Since they
are linked at run-time rather than compile time, they may never refer to a program's global variables by
direct reference to their names. (Po.inter access is fine though.) Also, a subroutine module is not permit­
ted to have any global variables of its own.

Architecturally , a subroutine module closely resembles a program module. The primary differ­
ence is a subroutine module does not have an initial execution point, since the system does not call the
module. (OS-9 has very little overhead, or control over subroutine modules. Therefore, anything goes.)

Since there is no required structure inside a subroutine module, they can be difficult to use.
Microware does use a preferred structure, but there is no requirement to do so. Inside a subroutine
module there are bound to be several externally callable routines . The biggest problem facing the pro­
gram using this library is finding the routines! That program can, however, easily determine two things
about the module: The base address (once it is in memory) and the address of the data area. If we adopt
the standard of placing an index table at the location refered to as the data area, we can use that index to
find the routines in the module.

Section: OS-9 Advanced Topics 77

I)

C and Assembly

On occasion you will need to mix C and assembly language for one purpose of another. If this is
in your future, you must understand the register convention used by Microware's C compiler for its
own functions. This convention is shown below.

Table 8: C Register Convention

Register(s) Purpose

dO,dl First two function parameter s. Remaining parameters are pushed onto the stack .

dO Function return value.

d2,d3 Compiler temporarie s for sub expressions et. al.

d4-d7 Register class variables.

aO,al Compiler temporaries for pointer arrithmetic.

a2- a4 Register class pointers.

a5 Stack frame pointer.

a6 Static storage pointer.

Section: OS-9 Advanced Topics 78

,)

r,

""

)

Trap Modules

Trap modules provide functionality similar to that of subroutine modules. There are several dif­
ferences, but the primary difference is that subroutine modules require no overhead on the operating
system or CPU (other than that required to execute the code, of course) and trap modules do. To call a
routine in a subroutine module, the. calling program simply jumps to the proper address. To call a rou­
tine in a trap module, the caller must cause a hardware exception.

The 68K processor provides 16 trap vectors with which to cause an exception; vector zero is
reserved by the operating system kernel. This leaves 15 vectors remaining, and OS-9 allows each pro­
cess to have its own set of up to 15 simultaneous trap handlers. These trap vectors get resolved within a
trap module.

The architecture of a trap module resembles that of the suggested use of a subroutine module.
One major difference, however, the trap module has exactly three entry points, and its index table has
offsets to exactly two! Recall, the subroutine module pointed . to an index table (of unknown length)
through the _mexec offset. The trap module points to the third entry point via _mexec, while the index
table is made of the first two long words inside the body of the module. (The kernel considers these
fields an extended part of the header.) Common names for these threee entry points are Traplnit, Trap­
Term (both in the index table) and Trap Ent.

Section: OS-9 Advanced Topics

')

~

~

79

)

'r

~

)

A calling program makes the trap module available by installing it upon one of its trap vectors .
Since trap vectors 13 and 15 may be used by the compiler, it is best to steer clear of these if possible.
The compiler uses trap vector 13 for cio or csl, and an older version of the compiler used vector 15 for
floating point math purposes. The function _os_tlink() is used to attatch to a tr<!-P module.

error_code _os_tlink{u_int32 vector, char *modname, void **trapent,
mh_trap **modptr, void *nothing, u_int32 xtra_mem);

.
The Traplnit entry point is called every time a process tlink's to a trap module. Trap modules are

given static storage every time they are linked to; if the module needs any globals initialized, the Trap­
Init routine is the place to do it.

The TrapTerm routine is not currently used by the system, thus it has no specific responsibility.

When the calling program wishes to use the trap module, a hardware exception must be gener­
ated. The 68K "trap" instruction is followed with a word, between O and 15, which identifies the vector
to generate the exception on. This vector must match the vector defined in the _os_tlink() call, 1
through 15.

Since you may wish to use a trap library for multiple routines, the word following the trap vector
is passed to the TrapEnt routine when the trap instruction is called. One caveat: the trap instruction is

Section: OS-9 Advanced Topics

~

~

80

.J

r,

~

)

not callable from C. However, Microware's assembler recognices the "tcall" macro which takes two
word parameters, the vector and function word, to call the trap instruction appropriately. Your class
directory contains a full trap example program.

Section: OS-9 Advanced Topics

~

~

81

~,

...

)

Exception Handling

Under normal circumstances, when a process causes a hardware exception, the kernel kills the
offending process. This treatment can be alleviated if the process first informs the kernel of a special
exception handling routine for the exception(s) which may be caused. If this has been done, rather than
kill the process, the kernel forces it to immediately execute its handling routine when it next gets the
CPU.

The kernel is informed of a process' exception handling capabilities through the _os_strap() sys­
tem call. The first parameter is a pointer to a special stack to use when in the handler(s) and the second
is a pointer to a table used to initialize the handler(s).

#include <settrap.h>
#include <MACHINE/reg.h>
error_code _o s _ strap (u_int32 *stack, strap *init_tbl);
/* u_int32 div0func(u_int32 vect, u_int32 pc, u_int32 addr) */

strap init_tbl[] = {
{T_ZERDIV,divOfunc},
{-1,NULL}

} ;

Section: OS-9 Advanced Topics

.,

~

82

)

~

{

....

Interrupt Service Routines

The OS-9 interrupt model includes the system kernel as a front end to your interrupt service rou­
tines. This is to allow multiple, independen t interrupt service routines to be installed on a single vector.

OS-9 interrupt service routines come in two varieties: fast and shared. A fast ISR is guaranteed
to be the first one called on a vector, and must save and restore all registers used except dO and a2.
There may only be one fast IRQ per vector. Shared IRQs line up on their vector with an order depen­
dant on their priorities. When the kernel is called for an interrupt request on a vector, the ISR list for
that vector is traversed until one of the routines claims responsibility for the interrupt. Shared ISRs
must preserve registers d2 - d7, al, a4, a5, and a7.

_ os _ firq (u_ int32 vector, 0, void *irq_rtn, void *statics);
_ os9 _ irq (u_ int32 vector, u_ int32 priority, void *irq_rtn,

void *glob_data, void *port_addr);

Section : OS-9 Advanced Topics

)

83

Process Scheduling

05-9 is a multi-tasking operating system; that is, two or more independent
programs, called processes or tasks, can be executed simultaneously. Several
processes share each second of CPU time . Although the processes appear to
run continuously , the CPU only executes one instruction at a time . The OS-9
kernel determines which process to run and for how long based on the
priorities of the active processes . The action of switching from the execution of
one process to another is called task-switching . Task-switching does not affect
the pro~ ' execution.

The CPU is interrupted by a real-time clock every tick. By default , a tick is .01
second (10 milliseconds) . At any occurrence of a tick, OS-9 can suspend
execution of one program and begin execution of another . The tick length is
hardware dependent . To change the tick length , you must change the
D_TckSec system global in the Init module, modify the clock driver, and re-
initialize the hardware. ·

__,,,,. The longest amount of time a process will control the CPU before the kernel re­
evaluates the active process queue is a called a slice or time-slice . By default,
a slice is two ticks . To change the number of ticks per time-slice, the standard
method is to modify the Init module .

OS-9 Training snd Education Process Schedul/ng - 1

Proc•• Sch«lul/ng

A process must be created before it can be scheduled for execution. New
processes are created by the F$Fork system call. The most important parameter
passed in the "fork" system call is the name of the primary module that the new
process is to execute immediately. The following list outlines the creation
process:

<D Locate or Load the Program.
OS-9 tries to find the module in memory. H the module is already in
memory, OS-9 goes on to the next step. li the module is not located
in memory, OS-9 searches for the module in the following places:

a. The default execution directory
b. Directories specified by the PATH environment variable
c. The current data directory or an explicitly stated directory (for

example, /h0/USR/TE1/DO.rn are searched for a procedure
file.

If the module is found, it is loaded into memory and OS-9 goes on to
the next step. If it is not found, an error is returned.

<2> Allocate and lnltlallze a Process Descriptor.
After the primary module has been located , a data structure called a
prouss descriptor is assigned to the new process. The process
descriptor is a table containing information about the process : its
state, memory allocation , priority, 1/ 0 paths , etc. The process
descriptor is automatically initialized and maintained. The process
need not be concerned about the descriptor's existence or contents.

<3> Allocate the Stack and Data Areas.
The primary module's header contains a data and stack size. OS-9
allocates a contiguous memory area of the required size from the free
memory space. NOTE: The malloc() and srqmem() calls can be used
to allocate more memory . However, 05-9 only allows 32 discontin­
uous areas per process.

@ lnltlallze the Process.
TI1e new process' registers are set to the proper addresses in the data
area and object code module. If the program uses initialized
variables and/or pointers, they are copied from the object code area
to the proper addresses in the data area .

<ID Insert the Process In the Active Queue.

Process
Creation

OS-9 Training and Education Process Scheduling • 2

Once created, a process can be in one of three states: active, waiting, or sleep­
ing . Each state bas an associated process queue. A queue is a linked list of pro­
cess descriptors. When a process moves from one queue to another, the process
descriptor is moved from the current queue to the new queue.

Processes in the active queue are active and ready for execution . Active
processes are given time for execution according to their relative priority with
_respect to all other active processes in U1e queue . All active processes receive
some CPU time, even if they have a low relative priority . This will be discussed
in the next section .

A process in the wait queue is inactive until a child process terminates or a
signal is received. The wait state is entered when a process executes an F$Watt
system service request. The process remains inactive until one of its
descendant processes terminates or the process receives a signal . Figure 1
illustrates how a process moves from the active queue to the wait queue and
back again:

Figure 1: A process enters the active queue with an F$Fork system call. If ftJ\
F$Walt system service request is received , the process is pJaced in the wait queue.
Once in the wait queue , the process waits for one of two conditions to occur: either
a child process dies or a signal is received . When one of the conditions is met, the
process moves back into the active queue .

Proc.•• Queue•

Process
Queues

WaffQueue

OS.9 Training and Education Process Scheduling - 3

Proc•• Schfldullng Prot»P QwuH

When a process is in the sleep queue, it is inactive for a specified time period or Sleep Queue
until a signal is received. The sleep state is entered when a process executes an
F$Sleep service request. The F$Sleep request specifies a time interval for
which the process is to remain inactive. Processes often sleep to avoid wasting
CTU time while waiting for some external event, such as the completion ofl/O.
Zero ticks specifies an infinite period of time. Processes waiting on an event are
also included in the sleep queue. Figure 2 illustrates how a process moves from
.Ute active queue to the sleep queue and back again:

F$Exit

Rgure 2: A process enters the active queue with the F$Fork system call. If an F$Sleep
service request is received, the process is placed in the sleep queue. Once in the sleep
queue, the process sleeps until one of two conditions occur : . either the specified time
period elapses or a signal is received. When one of the conditions is met, the process
moves back into the active queue.

There are three different types of sleep using the tsleep() C call:

• tsleep(O);
The process sleeps indefinitely until a signal is received.

• tsleep(1);
The process gives up the remainder of its time-slice.

• tsleep(n);
The process sleeps for n ticks.

OS-9 Training and Education Process Scheduling - 4

OS-9's Scheduling Algorithm

To explain OS-9's scheduling algorithm , the individual concepts involved are
discussed , starting with the most basic concept .

The round robin scheduling algorithm is the easiest scheduling algorithm to Round Robin
implement . With round robin, each process receives an equal share of the
available CPU time . For example , if three processes are in the active queue ,
each process receives one--third of the CPU time . This algorithm is generally
fair . However, if a process has a time-critical task, it may not be able to
complete the task within the time restraints if too man y other processes are
running .

Priorities allow some processes to run before others . For example, if two Priorities
processes are in the active queue and one process has a higher priority than the
0U1er, the process with the higher priority receives the CPU time . When
priorities are used with the round robin algorithm , the highest priority process
runs until it waits, sleeps , or terminates . All equal priority processes share the
CPU. This creates a problem because all low priority tasks stop while the
higher pri ority tasks run . This is called staroatioti or suffo cation .

Aging allows lower priority tasks to eventually get some CPU time while a Aging
higher pri ority task is in the active queue . OS-9 assigns priorities on a scale
from 1 to 65535, with one being the lowest . Processes enter the active queue
with an age equal to their priority . The kernel schedules the process in the
active queue with the highest age . There are four basic rules of aging: ·

• If a process in the active queue is not selected to receive CPU time ,
the process ' age is incremented by 1.

• The process with the highest age receives CPU time .

• When a pr ocess finishes executing , it re-enter s the active queue at an
age equal to its initial pri ority .

• The active queue is alwa ys kept sort ed by age .

OS-9 Training and EducaUon Process Schedullng - 5

~ .. SchMlullng OS-9'• Schfilullng Algorithm

During critical real-time applications , fast response time is sometimes
necessary. OS-9 provides this by pre-empting the currently executing process
when a process with a higher priority becomes active. The lower priority
process loses the remainder of its time-slice and is re-inserted into the active
queue . The higher priority process is then given a full time-slice .

For example , when no signals are sent to processes in the wait or sleep queues,
the processes executing in the CPU can be represented as the following:

0 1
Time (In Sllces)

2 3

I : ;;- Iii! {41 f Fi

l C }ll~t/ I)l(}t? :.'fff\:;:.

4 5

1 tick

I
1 time-slice

At the end of each tick, the CPU checks to see how long the current process has
been executing . If the process has only been executing for one tick, the CPU
allows the process to continue executing for a second tick. If the process has
been in the CPU at the end of two ticks , the process is placed back in the active
queue and a new process begins execution . In this example, each process enters
the CPU, runs for a time-slice , and re-enters the active queue .

If process C is in the sleep (or wait) queue and receives a signal while process
Bis in its first tick and if process B has a lower priority , process C pre-empts
process B. That is, process B gives up the remainder of its time-slice to process
C:

., A .,
t> B
8
ii. C

0 1
Time (In Slices)

2 3 4

111n1111111111111111111111illl11•·

.,

5

...
,...

Pre-Emptive
Active Queue

OS-9 Training and Education Proc.1111 Scheduling - 6

Procea Sch«lullng 05-9'• Scheduling Algorithm

Notice that process Conly uses the remainder of process B's time-slice . Process
C was executing at the end of the fourth and fifth ticks . Therefore , the CPU
placed process C back in the active queue and began processing process A.

If process C received the interrupt during process B's second tick, process C
would still pre-empt process Band run for two time-slices. However , at what
would have been the end of process B's time-slice , the kernel would see that
process C had not been executing at the end of two ticks and would allow it to
continue executing for another tick:

0 1

OS-9 Training and Education

Time (In SHces)
2 3 4 5

Procen Scheduling - 7

~- Set.du/Ing 05-11'• Schedullng Algorithm

Task-switching is also affected by two system global variables: D _MinPty
(minimum priority) and D_MaxAge (maximum age). Both variables are
initially set in the Init module. Super users can access the variables through the
F$SetSys system call.

D_MinPty defines a minimum priority below which processes are neither aged
nor considered candidates for execution. Processes with priorities less than
D _MlnPty remain in the waiting queue and continue to hold any system
resources that they held before D _M inPty was set.

D_MlnPty is usually set to zero. All processes are eligible for aging and execu­
tion when this value is set to zero because all processes have an initial priority
greater than zero.

Figure 3 illustrates D_MinPty.

128
Age
150 175

A • I t----~..-----~--------J ~ _____ +_:;_.-:_'f'~l~l
D _____________ •_ ... ! lnltlal Priority • ♦

Figure 3: Four processes are in the active queue. Processes A and D have initial
priorities greater than 150. Processes B and C have priorities less than 150. If
D _ Mlnpty is set al 150, only processes A and D will be eligible for aging and
execution. Processes B and C will not be executed even if the other two processes
sleep, wait, or terminate.

WARNING: D_MinPty is potentially dangerous. If the minimum _system
priority is set above lhe priority of all running tasks, the system completely
shuts down and can only be recovered by a system reset. It is crucial to restore
D_MinPty to zero when the critical task finishes or to reset D_MinPty or a
process' priority in an interrupt service routine.

D_MaxAge defines a maximum age over which processes are not allowed to
mature . By default, this value is set to zero . When D_MaxAge is set tn zero , ii
has no effect on the processes waiting to use the CPU .

D_Mlnpty
and

D_MaxAge

OS-9 Training and Education Process Schedullng • B

~ Sch«lullng OS-9'• Schedul/ng Algorithm

When set, O_MaxAge essentially divides tasks into two classes: low priority
and high priority. A low priority lask is considered to be any task with a
priority below O_MaxAge. Low priority tasks continue aging until they reach
the O_MaxAge cutoff, but they are not executed unless there are no high
priority tasks waiting to use the CPU.

A high priority task is any task with a priority above O_MaxAge. A high pri­
ority task receives the entire available CPU time , but it is not aged . When the
high priority tasks are inactive , the low priority tasks are run.

NOTE : If you wish to establish a strictly priority-based scheduling algorithm ,
set O_MaxAge to 1. Setting D_MaxAge to 1 effectively shuts off the aging
mechanism. Therefore, agiug does not affect Ute scheduling algorithm.

Figure 4 illustrates O_MaxAge.

128

A

Age
150 _____________ ____.

5e __ _
f C D. ---------....._ __ __. __ _

D

175

Initial Prtortty • ♦

Figure a: Four proces9eS are in the active queue . Proce!ISeS A and D have priorities
greater than 150, and proce98eS B and C have priorities less than 150. If D _MaxAge is
set at 150, processes Band C will continue to age until they reach 150. Procei.,es A and
D do not age . As a result, process D are not executed until process A sleeps , waits , or
terminates . If both process A and process D are sleeping, waiting, or have terminated ,
processes B and C are eligible for execution .

A

B

! C

f D
D.

128

•
♦

Age
150

+

+
175

~

~

Figure 4b: After several time--slices have passed , pro cesses Band C hav e both reached
an age of 150, but they are not eligible for execution unless the other two pr ocesses are
sleeping, waiting, or have terminated . They cannot age beyond 150.

OS-9 Training and Education Process Scheduling - 9

Proce1111 Scheduling OS-9'• Scheduling Algortthm

NOTE : Any process performing a system call is not pre-empted until the call
is finished , unless the process voluntarily gives up its time-slice . This exception
is made because these processes may be executing critical routines that affect
shared system resources and could be blocking other unrelated processes .

NOTE : System state processes are not time-sliced .

OS-9 Training and Education Process Scheduling - 10

Procen SclHHlul/ng OS-9'• Scheduling Algorithm

For this example, four processes are run. One process has a priority of 130; the
other three processes have a priority of 128. When the processes have been in
the active queue for 9 minutes 1.60 seconds, a procs command is performed to
determine the amount of time each process has spent in the CTU:

Id Pld Grp.Usr Prior HemSiz Sig S CPU Time Age Module & 1/0
3 7 0.151 128 4.00k 0 w 1.48 24:09 shell <>>tll >rO
8 3 0.151 130 8~00k 0 a 3:00.52 0:09 a <»>tll
9 3 0.151 128 8 .00k O a 2:00.44 0:09 b <>»tll

10 3 0.151 128 8.00k 0 8 2:00.37 0:09 C <»>tll
11 3 0.151 128 8 . 00k 0 a 2:00.27 0:09 d <>»tll
12 3 0.151 128 20.00k 0 * 0. 04 0:00 procs <>>tll >rO

The following chart is a breakdown of how long each of the processes stayed in
theCTU:

Process Prior Time In CPU Percentage of CPU Time

A 130 3 minutes 00.52 seconds .3333 3/9
B 128 2 minutes 00.44 seconds .2223 2/9
C 128 2 minutes 00.37 seconds :12.22 2/9
D 128 2 minutes 00.27 seconds .2220 2/9

Example

OS-9 Training 11nd Education Process Scheduling - 11

0S-9 Memory Management

If any object (a program , constant table , etc .) is to be loaded into memory , it
must use the standard 05-9 memory module format . This enables OS-9 to
maintain a module directory to keep track of modules in memory . The module
directory contains the name , address , and other related information about each
module in memory .

When a module is loaded into memory , it is added to the module directory .
Each directory entry contains a link count . The link count is the number of
processes using the module .

When a process links to a module in memory , the module's link count is
incremented by one . When a process wtlinks from a module , the module 's link
count is decremented by one. When a module 's link count becomes zero , its
memory is de-allocated and it is removed from the module directory , unless
the module is "sticky ."

A sticky module is not removed from memory until its link count becomes -1
or memory is required for another use . A module is sticky if tbe sixth bit of the
module header's M$Attr field is set. You can set this bit at link tim e or with the
fixmod utility .

OS.9 Trslnlng snd Educstlon Memory Mgmt• 1

OS-II Memory Management

05-9 uses a software memory management system where all memory is
contained within a single memory map. Therefore , all user tasks share a
common address space .

A map of a typical 05-9 memory space is shown in Figure 2. The various
sections shown for ROM, RAM, 1/ 0, etc ., are not required to be at specific
addresses, unless noted otherwise. Microware recommends that you keep
each section in contiguous reserved blocks arranged in an order that facilitates
future expansion. It is always advantageous for RAM to be physically
contiguous whenever possible .

1/0 Device Addresses

Bootstrr& ROM and/or Optional
R M's for System or

Appllcallon Software

Unused: AvaHable For Future
RAM or ROM Expansion

RAM
128K minimum

512K recommended
(the more th• better)

ROM or RAM For Excepflon Vectors

ROM Reset Vectors

+-- Highest Memory Address

+-- Bootstrap ROM located here
with first 8 bytes (reset vector)
also mapped vector locations:
000000-000007

+-- RAMlnmuttiplesof 8K
contiguous, expanded
upward

+-- Address 000400

+-- Address 000008

+-- Address 000000

Figure 2: Typical OS-9 Memory Map

NOTE: For the 68020 and 68030 CPUs, the Vector Base Register (VBR) can be
set anywhere in the system. Thus, for these types of systems , RAM or ROM are
not required to be at address 0.

OS-9 Training and Education

OS-II Memory Map

OS-9
Memory

Msp

Memory Mgmt- 2

OS-9 Afflmory Management System Memory Allocation

During the OS-9 start-up sequence , blocks of RAM and ROM are found by an
automatic search function in the kernel and the boot ROM. OS-9 reseives some
RAM for its own data structures . ROM blocks are searched for valid OS-9 ROM
modules .

The amount of memory required by OS-9 is variable . Actual requirements
depend on the system configuration and the number of active tasks and open
files .

System
Memory

Allocatlon

All unused RAM memory is assigned to a free memory pool . Memory space is User Memory
removed and returned to the pool as it is allocated or de-allocated for various
purposes . OS-9 automatically assigns memory from the free memory pool
whenever any of the following occur :

• Modules are loaded into RAM .
• New processes are created.
• Processes request additional RAM .
• OS-9 requires more 1/ 0 buffers or its internal data structures must

be expanded.

Storage for user program object code modules and data space is dynamically
allocated from and de-allocated to the free memory pool . User object code

~"' modules are also automatically shared if two or more tasks execute the same
object program . User object code application programs can also be stored in
ROM memory.

The total memory required for user memory depends largely on the
application software . It is suggested that a system minimum of 128K plus an
additional 64K per user be available . Alternatively, a small ROM-based control
system might only need 48K of memory.

OS-9 Training and Education Memory Mgmt- 3

......... ...-·

OS-9 ,.,.mory MaMgt1msnt Memory Frsgmsntatton

Once a program is loaded , it must remain at the address where it was originall y
loaded . Although position-independent programs can be initially placed at
any address where free memory is available , program modules cannot be
relocated dynamically afterwards . nus characteristic can lead to a sometimes
troublesome phenomenon called meniory fragmentation .

When programs are loaded , they are assigned the first sufficiently large block
of memory at the highest address possible in the address spa ce. (If a ii colored "
memory · request is made, this may not be true.) If a number of program
modules are loaded, and subsequently one or more non-contiguous modules
are "unlinked ," several fragments of free memory space will exist. The total
free memory space may be quite large. However , because the unused space is
scattered , not enough space will exist in a single block to load a particular
program module.

One way to avoid memory fragmentation is to load modules at system startup .
This places the modules in contiguous memory space . Another way is to
initialize each standard device when the system is booted . nus allows the
devices to allocate memory from higher RAM than would be available if the
devices were initialized later .

If serious memory fragmentation does occur , the system administrator can kill
processes and unlink modules in 85(."'ellding order of importan ce until there is
sufficient contiguous memory . You can determine the number and size of free
memory blocks with the mfree utility

05-9 colored memory allows a system to recognize different memory types
and reserve areas for special purposes . For example , you could design a part
of a system 's RAM to store video images and battery backup another part. The
kernel allows isolation and specific access of areas of RAM like these. You can
request specific memory types or 11colors" when allocating memory buffers,
creating modules in memory , or loading modules into memory . H a specific
type of memory is not available, the kernel returns error #237, E$NoRAM.

Colored memory lists are not essential on systems with RAM consisting of one
homogeneous type, although they can improve system performance on some
systems and allow greater flexibility in configuring memory search areas. The
default memory allocation requests are still appropriate for most hom ogeneous
systems and for applications which do not require one memory type over
another . Colored memory lists are required for F$Trans (addres s translation) .

OS-9 Training and Education

Memory
Fragmentation

Colored
Memory

Memory Mgmt- 4

OS-9 !Mmory M•n•gement

The kernel must have a description of the CPU's address space to make use of
the colored memory routines . You can establish colored memory by including
a colored memory definition list (Memllst) in the systype .d file, which then
becomes part of the In.it module . The list describes each memory region's
characteristics. The kernel searches each region in the list for RAM during
system startup.

A colored memory definition list contains the following information:

• Memory Color (type)
• Memory Priority
• Memory Access Permissions
• Local Bus Address
• Block Size the kernel 's coldstart routine uses to search the area for

RAMorROM
• External Bus Translation Address (for DMA, dual-ported RAM, etc.)
• Optional name

The memory list may contain as many regions as needed. If no list is specified ,
the kernel automatically creates one region that describes the memory found
by the bootstrap ROM.

Memlist is a series of MemType macros defined in systype .d and used by init.a.
Each line in the Memllst must contain all the following parameters , in order:

type, priority, attributes, blksiz, addr begin , addr end , name, OMA-offset

Hem Li st
HemType SYSRAH. 255.B_USER.4096.0.$200000 .0nBoard.$200000
HemType SYSRAH. 250.B_USER+B_Parity.4096 , $600000,$800000 .0ffBoard.O -OnBoard dc.b ·tast on-board RAH".O

OffBoard dc.b •vME Bus Hemory". O

OS-9 Training •nd EducaUon

Colored Memory

Colored
Memory

Definition List

Memory Mgmt- 5

-·

_lcalloc() Allocate Storage for Array (low-overhead)

SYNOl'SIS: void *_lcalloc(nel ,el size)
unsigned long nel.

els1ze:
/* number of elements in array* /
/* size of elements *I

FUNCTION: _lcalloc() allocates space for an array. nel is the number of elements in the array , and elslze is
the size of each element. The allocated memory is cleared to zeros .

This function caJls _lmalloc() to allocate memory . H the allocation is successful , _lcalloc()
returns a pointer to the area . If the allocation fails, _lcalloc() returns zero (NULL).

NOTE: Use of the low-overhead allocation functions Ucalloc(), _lmalloc(), _lrealloc()) instead
of the general allocation functions (calloc(), malloc(), realloc()) saves eight bytes per allocation
because the low.averhead functions do not save the allocation size or the four-byte check value .

CA VEAB: Use extreme care to ensure that only the memory assigned is accessed . Modifying addresses
immediately above or below the assigned memory causes unpredictable program results .

The low-overhead functions require that the programmer keep track of the sizes of allocated
spaces in memory. (Note the _lfree() and _lrealloc() parameters.)

_lfree{) Return Memory (low-overhead)

SYNOPSIS: void _ 1 free (ptr. size)
void *ptr: / * pointer to memory to be returned * I
unsigned long size : / * size of memory to be returned * I

FUNCTION: _ltree() returns a block of memory granted by _lcalloc() or _lmalloc(). The memory is returned
to a pool of memory for later re-use by _lcalloc() or _lmalloc().

_Hree() never returns an error .

NOTE: Use of the low-overhead allocation functions Lfcalloc() , lmalloc(), _lrealloc()) instead of
the general allocation functions (calloc(), malloc(), realloc()) saves eight bytes per allocation
beca~ the low.aver head functions do not save the allocation size or the four-byte check value.

C.A VE.AB: If _Hree() is used with something other than a pointer returned by _lmalloc() or _lcalloc(), the
memory lists maintained by _lmalloc() are corrupted and programs may behave unpredictabl y.

The low.averhead functions require that the programmer keep track of the sizes of allocated
spaces in memory.

OS-9 Training and Education Memory Mgmt- 6

,,

•name~n~,~-----------===:::::;~11!11 d) OS-9 •mory M•n•..,~ low-overhea

ry from Allocate Memo Ima o

SYNOPSIS:

FUNCTION:
llocate */ block to a aligned

d

* lmalloc(size) /* size of memoryb •- Thepointerissuitab\y voi - size; ofslze Y=· i g
ned 1 ong block of m<mO"f -uns nointertoa _ lmallocQ returns a r - -

/'dtia, IJ--......, _____ :--
of the genera111/localion Functio~ <carcc,......, __ ,.

Value. '-,,_ U,,, low'<>verheod ~ do aot -

u,,.<are 10....,_ lliaton1y the -'Y ~ by -tnair.co ls -..i_ ~
•dd- ln,"1ediately above o, below the~~ o, -g _#ree () a •alue not ~ by -lrnallocO ca..,.. ""Pfedl-fe ~""ulb.

n.e iow"""erltead filnction., requ;,. lliat the p~ keep hack of Ifie sizes of alloa,1e.i •Paces ln llleino,y, !Note lite -lfreeO and _lreaBoC(J ,,.,._..._,

ne~s1ze , oJdsfze)

VOid •oldptr; I• Old Pointer to block of •••ory •t
uns1oned long newsize; I • sfze of new •••ory block •t

Oldsize; I• Size of Old ■e■ory block •t ,ON, _ IA>l>HoC() re-sizes a block of 111eino,y l'Ointt!d lo by Oldpl,, 0/dpl, shouJd be a Value 'elurned by a PCOviou, -lrnaHoco, _/ca/Joe() o,--"""11oc(). .

_f,eanoc(J """""' a l'Olnter lo a new black of -,Y . 17,e- of 11ti, new black ;,, SJ>ecified by -lz• . The l'Ointer ls aligned to sto,e data of any type.

If -lze is smau.,. lhan oldslze, the contents of lhe old black""' lrunca1e<1 and pl"Oed in the
new blocJc. Othen.,;.., the en11rety of lhe old blOCk's contents begu, the new block.
n.e lesults of _ll'eaffoC(NULL,newv.ize,01 ••d _lmanoc(slzo) "'• the--. .

_ll'oanoco retu.,,. •- !NULLJ Y the ""iuesled llleino,y;,, not availableo,- "8Wsize is "P«ined
as2e.ro.

Non,, Use of the low..,,..,.h..., alloeation lunction, UcalloC(l, -'- · ~~~ -
~---~ --- ----

of lhe gene,a1 aJ10ca1fon lunct;o.., <<alloc(i, """"""'-"· ~ ~ · -- __ _
,.__ --~- ·-"='USe the low-ov.........,..., _ __ ,.._

,L Lw~ '7<1.1.~ ;;,. --- ,tt -

~ ~~ - - -~ MemoryMgmr-7

d Education 054 Training .,,

OS-9 Memory M•n•~nt

_lmalloc() Allocate Memory from an Arena (low-overhead)

SYNOIJSIS: void *_lmalloc(size)
unsigned long size: I* size of memory block to allocate*/

FUNCTION: _lmalloc() returns a pointer to a block of memory of size bytes . The pointer is suitably aligned
forstorage of data of any type .

_lmalloc() maintains an amount of memory called an arena from which it grants memory re­
quests. _lmalloc() will search ils arena for a block of free memory large enough for the request
and, in the process , coalesce adjacent blocks of free space returned by the _tfree() function. If
sufficient memory is not available in the arena, _lmalloc() caJls _srqmem() to get more memory
from the system.

_lmalloc() returns zero (NULL) U there is no available memory or if the arena is detected to be
corrupted.

NOTE: Use of the low-overhead allocation functions (_lcalloc(), _lmalloc(), _ lrealloc()) instead
of the general allocation functions (caJloc(), malloc(), realloc()) saves eight bytes per -allocation
because the low-overhead functions do not save the allocation size or the four-byte check
value.

CAVEA1'S: Useextremecaretoensurethatonlythememory assigned by _lmalloc() is accessed. Modifying
aJdre58eS immediately above or below the assigned memory or pusing _lfree() a value not
&!Signed by _lmalloc() causes unpredictable program results .

The low-overhead functions require that the programmer keep track of the sizes of allocated
spaces in memory . (Note the _tfree() and _lrealloc() parameters.)

_lrealloc() Resize a Block of Memory (low-overhead)

SYNOPSIS :

FUNCTION:

void *_lrealloc(oldptr, newsize , oldsize)

void *oldptr : /* old pointer to block of memory* /
unsigned long newsize: /* size of new memory block* /

olds1ze: /* size of old memory block*/
_lrealloc() re-sizes a block of memory pointed to by oldptr. oldptr should be a value returned
by a previous _lmalloc(), _lcalloc() or _lrealloc() .

_lrealloc() returns a pointer to a new block of memory. The size of this new block is specified
by newslze. The pointer is aligned to store data of any type.

li newslze is smaller than oldslze , the contents of the old block are truncated and placed in the
new block. Otherwise, the entirety of the old block's contents begin the new block .

The results of _lrealloc(NULL,newslze,O) and _lmalloc(size) are the same.

_lrealloc() returns zero (NULL) if the requested memory is not available or newslze is specified
as zero.

NOTE: Use of the low-overhead allocation functions Ucalloc() , _lmalloc(), _lrealloc()) instead
of the general allocation functions (calloc(), malloc(), realloc()) saves eight hyte:--p €>r ;illocation
because the low-overhead functions do not save the allocation size or the four-hyte check
value .

CA \/EAT: The low-overhead functions require that the pmgrammer keep track of the sizes of allncalcd
spaces in memory .

OS-9 Training snd Education Memory Mgmt- 7

OS-9 •mory ManalJ#lment

_mallocmin() Set Minimum Allocetlon Size

SYNOPSIS: _IHI 11 OCllli n (size)
unsigned size; / * minimum allocation size in bytes* /

FUNCTION: _malloanin() sets the minimum amount of memory that allocation functions may request
through srqmem() . The size parameter cannot be less than the system memory block size . If a
smaller size is requested , size is automatically set to the system memory block size .

OS-9 allows each process only 32 different memory segments ; therefore , size should be in­
creased if a progtarn requires a great amount of memory. The extra space may be necessary if
memory is fragmented .

_malloanin() never returns an error.

_srqmem{) System Memory Request

SYNOPSIS: char *_srqmem(size)
unsigned size: I* requeste~ number of bytes*/

FUNCTION: When tight control over memory allocation is required , _srqrnem() and the complementary
function _srtmem{) are provided to request and return system memory .

This function is a direct hook into the OS-9 F$SRqMem system call. The specified size is
rounded to a system-defined block size. A size of Oxffffffff obtains the largest contiguous block
of free memory in the system. The global unsigned variable _srqslz may be examined to deter­
mine the actual size of the block allocated .

If successful , a pointer to the memory granted is returned . If the request was not granted ,
_srqmem() returns the value -1 and the appropriate error code is left in the global variable
ermo.

The pointer returned always begins on an even byte boundary . Take care to preserve the value
of the pointer if the memory is to be returned via _srtmem{) .

CA VEAB: The F$SrqMem request is intended for system level use, but the extended addressing range of
the 68000 required some method to obtain memory without regard to where the memory is
physicall y located .

A user process may have up to 32 non-rontiguous F$SrqMem requests active at a given time .
Ideally , the requests should be as large as practical, and preferably some multiple ol JK

_ Srtmem () System Memory Return

SYNOPSIS: int _srtmem (size ,ptr)

unsigned s i ze ; /* number of bytes to return* /
char *ptr: / * pointer t o memory to return* /

FUNCTION: _srtmem() is a direct hook into the OS-9 F$SRtMem sys tem call. It is used to return memory
granted by _srqmem() . Care should be taken to ensure that the ~ize and ptr are the sam e as
those returned by _srqmem() .

If an error occurs , the function return s the value -1 and the app ropriate error coJ <.> is plat:eJ in
the global variable ermo .

OS-9 Training and Education Memory Mgmt- B

OS-9 Memory Managem.nt

calloc() Allocate Storage for Array

SYNOPSIS: char *ca 11 oc (ne l • els i ze >
unsigned nel .

elsize:
/ * number of elements in array* /
I * size of elements* /

FUNCTION: calloc() allocates space for an arra y. nel is the number of elements in the array , and elslze is the
size of each element. The allocated memory is cleared to zeroes . calloc() calls malloc() to
allocate memory . If the allocation is successful , ca.lloc() returns a pointer to the area If the
allocation fails, 0 is returned .

C~VEAlS: Use extreme care to ensure that only the memory assigned is accessed . To modify addresses
immediately above or below the assigned memory is sure to cause unpredictable program
results .

ebrk() Obtain External Memory

SYNOPSIS: extern 1 nt _memmi ns:
char *ebrk(size)
unsigned size: / * number of bytes to return* /

FUNCTION: ebrk() returns a specified amount of memory (size). The memory is obtained from the system
via the F$SrqMem system request. It is intended for general purpose memory allocation .

The blocks of memory returned by this call may not be contiguous , thereby providing the
ability to obtain a block of memory of a given size from anywhere in the 68000 address space .

To reduce the overhead involved in requesting small quantities of memory , ebrk() requests
memory from the system in a minimum size determined by the global variable _memmlns
which is initiall y set to 8192, and satisfy the use r requests from this memory spa ce. ebrk()
grants memory requests from this memory space provided the request s are no larger than the
amount of space.

If the request is larger than the available space , ebrk() wastes the rest of the space and tries to
get enough memory from the system to satisfy the request. This method works very well for
programs that need to get large amounts of not necessarily contiguous memory in little bits
and cannot afford the overhead of malloc(). Changing the _memmins variable causes ebrk() to
use that value as the F$SrqMem memory request size

If the memory request is granted , a pointer (even-byte aligned) to the block is returned . If the
request is not granted , -1 is retun,ed and the appropriate error code is placed in the global
variable ermo .

CA VEAJ'S: The memory obtained from ebrk() is not given back until the process tenninates .

free() Return Memory

SYNOPSIS: free(ptr)

char *ptr: / * poi nter t o memory t o be return ed • ;
FUNcrlON: free() return s a block of memory gran ted by malloc() or calloc(). The memory i!' retum L>d to a

pool of memory for later re-use by malloc() or free (). The memory fr~ by malloc() ur free () is
returned to the system

CAVEATS: It is dangerous to use free() with something other than a pointer pre viously returned by
malloc() or calloc() . To do so hopelessly corrupts the memory lists maintained by malloc(),
rendering them useless and possibly causing unpredictable program behavior .

OS-9 Training and Education Memory Mgmt-9

OS-9 Memory Management

freemem(} Determine Size of Unused Stack Area

SYNOPSIS: int freemem ()

FUNCTION: freemem{) returns the number of bytes allocated for the stack that have not been used.

If compiler stack checking is enabled , the stack is checked for possible overflow before a
function is entered. The lowest address U,e stack pointer has reached is retained so freemem()
can report the number of bytes between the stack lhnit and the lowest stack value as the unused
stack memory.

CAVEATS: The program must be compiled with stack checking code in effect for freemem() to return a

correct result. This function is historical; avoid using it in new code as it is likely to be removed
in a future release.

ibrk() Request Internal Memory

SYNOPSIS: char *ibrk(size)
unsigned size: /* size of memory block*/

FUNCTION: lbrk() returns " pointer to a block of memory of size bytes . The returned pointer is aligned to a
word boundary . The memory from which lbrkO grants requests is the area between the end of
the data allocation and the stack:

Higher Address:

Stack Pointer ---+

Stack Limit ---+
changes as ibrk
Area grows

Lowest Address:

Stack Area

ibrkArea

Program
Data Area

Grows toward
ibrkArea
!

t
Grows toward
Stack

If the requested size would cause the lbrk area to cross the stack pointer, the request fails. You
can use freemem() to determine the amount of stack remaining which is also the remaining ibrk
area .

ibrk() is useful to obtain memory from a fixed amount of memory, unlike ebrk() whose available
memory is that of the entire system . The C 1/0 library functions request the first 2K of 1/0
buffers from this area , the remainder from ebrk() .

CAVEAT$: Be very careful not to crowd out the stack with lbrk() calls. When stack checking is in effect, the
program aborts with a •••stack Overflow••• message if insufficient stack area exisl i-: to call a
function .

OS-9 Training and Education Memory Mgmt- 10

OS-9 Mflmory M•n•~tn11nt

malloc() Allocate Memory from an Area

SYNOPSIS: char *malloc(size)
unsigned size: I* size of memory block to allocate*/

FUNCTION: malloc() returns a pointer to a block of memory of size bytes . The pointer is suitably aligned
for storing any type of data.

malloc() maintains an amount of memory called an arena from which it grants memory re­
quests. melloc() searches its arena for a block of free memory large enough for the request and ,
in the process, unites adjacent blocks of free space returned by the free() function. U insufficient
memory is available in the arena, mellocO calls ebrk() to get more memory from the system

malloc() returns NULL (0) if there is no available memory or if it detects that the arena is
corrupted by storing outside the bounds of an assigned block.

CA VEA1S: Use extreme care to ensure that only the memory assigned by melloc() is a<:t'.essed. Modifying
addresses immediately above or below the assigned memory or passing free{), a value not
assigned by malloc(), causes unpredictable program results.

sbrk() Extend Data Memory Segment

SYNOl'SIS: char *sbrk(size)
unsigned size: /* size of memory block desired* /

FUNCTION: sbrk() allocates memory from the top of the data area upwards.

Lowest Address

sbrkArea

Stack Area

lbrkArea

Program
Data Area

i
Grows Toward
Higher Address

sbrk() grants memory requests by calling the F$Mem system call. This method resizes the data
· area to a larger size ; the new memory granted is contiguous with the end of the previous data

memory .

On systems without an MMU, this call is certain to fail quickl y, becaus e it may h>cp Jtrowing
in size until the data area reaches other allocated memory. At this point , it is impo ss il,le to
increase in size and an error is returned . A progrn.m may be able to increas e its data ~iz.e only
201<, even if there is 200K available elsewhere .

To gain the most utility of the 68000 addressing space, use the ebrk() function which returns
pointers to memory no matter where it is located in the system.

OS-9 Tr•lnlng snd Education Memory Mgmt- 11

05-9 Memory Managemt1nt

Srqcmem{) Allocate Colored Memory

SYNOPSIS: fi ncl ude <111emory. h>
char *srqcmem(bytecnt , memtype)
int bytecnt, /* size of memory to allocate* /

memtype: /* type of memory to allocate*/
FUNCTION: srqanem() is a ·direct hook to the F$SAqCMem system call. bytecnt is rounded to a system­

defined block size . The size of the allocated block is stored in the global integer variable _srqc­
slz.. H bytecnt is 0xffffffff, the largest contiguous block of free memory in U,e system Is allocated.

memtype indicates the specific type of memory to allocate. <memory .h> contains definitions
of the three types of memory that you may specify :

SYSRAM System RAM memory
VIDE01 Video memory for plane A
VIDE02 Video memory for plane B

If memtype is zero, no memory type is specified . Consequently , any available system memory
may be allocated .

H successful, a pointer to the memory granted is returned. The pointer returned always begins
on an even byte boundary. H the request was not granted , the function returns the value -1 and
the appropriate error code is pla~ in the global variable ermo.

NOTE: srqcmem() is identical to _srqmem() with the exception of the additional color param­
eter .

stacksiz() Obtain Size of Stack Used

SYNOPSIS: int stacksiz()

FUNCTION: If the stack checking code is in effect, a call to stackstz() returns the maximum number of bytes
of stack used at the time of the call. You can use this function to determine the stack size a
progr~ requires.

NOTE : This function is historical and will likely be removed in a future release .

OS-9 Training and Education Memory Mgmt- 12

__,.·

Interfacing to Assembly Language

C programs can run hand-written assembly language either by in-line coding
in C programs using the #asm and #endasm directives or by giving the name
of previously assembled relocatable file(s) on the C executive command line .

It is difficult to determine just where the compiler is during code generation .
Therefore , you should not embed assembly language code within C functions .
Assembly code is best placed in a separately assembled module to be linked
with the rest of the program or in a stand-alone function without any C code .

If the c68 compiler is used , all functions and machine language subroutines are
called by bsr instructions , except functions more th~ 32K away from the
current pc .

The register usage conventions are (in general) as follows :

DO - Dl Function argument / return registers
D2 - D3 Compiler allocated temporaries
D4 - D7 Used for user register variables
AO - Al Compiler allocated temporaries
A2 - A4 Used for user register variables

AS Frame pointer
A6 Bct.se address of variable storage area
A7 Stack pointer

The compiler uses a complex register allocation method to provide the
smallest , fastest code for the majority of programs encountered. The 68000 has
a large number of processor registers . Exactly half of these are available for use
as register variables . The compiler uses the remaining processor registers for
storing the intermediate results during the evaluation of expressions .

The a6 register is used as a pointer to the base of the global (static) variables . It
is passed to a program when the program is forked and is never changed by C
code .

The parameter type and the order specified in the parameter list indicates to the
called function where the parameter is located . Parameters are either in a
register or on the stack .

OS-9 Training and Education C Interface - 1

C/Assembly Language Interface Examples of C Parameter Passing Techniques

For this discussion, an integral parameter is of type int, a pointer , or a char or
short converted to an int. A double parameter is of type double or a float
converted to a double. A float is converted to a double before being passed on
the stack

The first integral parameter is passed in dO, and the second integral parameter
(if any) is passed in d1. A single double p3rameter is passed in dO and d1, the
most significant half in dO, the least significant half in d1 . Any remaining
parameters are pushed on to the stack . If the first parameter is integral and the
second is a double , the integral parameter is passed in dO and the double is
passed entir ~ly on the stack .

If a function is to return a value , the integral (or float) value is returned in the
dO.I register. A double value is returned in dO.I and d1 .I.

Assumption
Assembler

init i, j , k;
double a, b, c;

OS-9 Training and Education

CCode

func(i);

func(i,j);

func(i ,j, k);

func(a)

func(a,b)

func(a,i)

func(i,a)

Generated

move.I i,dO
bsrfunc

move.I j,d1
move.I i,dO
bsr tune

move.I k,-(sp)
move.I j,d1
move.I i,dO
bsrfunc

movem.l a,d0/d1
bsrfunc

move.I b+4,-(sp)
move.I b+O,-(sp)
movem.l a,d0/d1
bsr func

move .I i,-(sp)
movem.l a ,d0/d1
bsr func

move.I a+4,-(sp)
move .I a+O,-(sp)
move.I i,dO
bsr tune

Examples of
CParameter

Passing
Techniques

C Interface • 2

C/Assembly Language Interface Examples of C Parameter Passing Techniques

All functions (C or assembler) are required to restore any changed registers to
the values they contained when the function was called. The only exceptions
to this are function return register(s) and register(s) in which the functio11's
argument(s) are passed.

All parameters passed on the stack are 4-byte long words. Types char and short
are sign extended to long wor<:ts. Types unsigned char and unsigned short are
padded to the left with zeroes.

The 68000 bsr instruction, which is used for function calling , is limited to a
±321< address displacement. The bsr instruction has sufficient range for all but
the very largest programs. In order to permit function calls outside this range
while retaining position independence of the code, the linker automatically
builds a jump table of long addresses of function entry points outside the range
of bsr.

This table resides in the data area. It is accessed by the symbol _jmptbl defined
by the linker. When coding assembly language routines ; all external functions
should be accessed by the word length displacement form of bsr so the linker
can change the bsr to a jump if the displacement is too distant.

Consult the OS-9/68000 Assembler/Linker/Debugger Manual for more
infom1ation on the jump table.

OS-9 Training and Education C Interface - 3

Introduction to Trap Handlers

05-9 provides support for the software-generated exception called a trap. A
process can install a module , called a trap handler , on any one of the 16 vectors
available . Because modules in 05-9 are re-entrant, multiple processes can
simultaneously share a single trap handler. All of these attributes combined
can save memory, allow for modular programming, and make software more
flexible .

For more information on the TRAP instruction , refer to the appropriate 68000
assembly language programming manual.

The first step in creating a trap handling system is to write the trap handler
itself . When writing a trap handler , you can assume that only one process is
using the trap handler at one time . The operating system maintains this
illusion by allocating a different trap handler static storage for each process .
That is, a trap handler may have its own set of variables , and this set of
variables is different for each process that links to it.

An important consideration is the way that trap handlers are executed. When
a process calls a trap handler, it is as if that process had branched to a
subroutine in its own · module . A trap handler executes in the same process
context as the process that called it; it does not execute as another process . If
the trap handler calls sleep, the process goes to sleep . Figure 1 shows how a
process calls a trap handler and how the trap handler returns to the calling
process .

Process Context

Figure 1: When process A executes a trap instruction, the trap handler is called .
After executing its instructions , the trap handler returns to the process just as a
subroutine would .

OS-9 Training and Education

Static
Storage

Traps- 1

Trap Handler Construction

Trap handlers are constructed from three basic elements:

• Trap init code

• Trap handling code

• Trap terminate code

The trap handling _ code is usually broken into several units as well: code to
dispatch the different trap function codes and the subroutines themselves.
Figure 2 shows the parts of a trap handler and their normal organization.

trap#x

Figure 2: This is the form of a trap handler. Notice the two different entry points.
Currently , Trap Terminate does not get executed . It is for future use only.

OS-9 Training and Education
Traps-2

OS-9 Trap Handlers

The trap init portion of a trap handler gets called when a process executes a
F$Tlink system call. This system call tells the operating system to install a
specified trap handler on a specified vector. When F$TLink is executed , the
kernel calls the trap init portion of the trap handler . This code should prepare
the trap handler for future calls by doing such things as initializing constants
or creating data tables . In other words , trap init should do these tasks so that
the subroutines do not have to be concerned about them later .

The actual trap handling code is normn11y constructed from two parts : the
dispatcher and the subroutines themselves . The dispatcher is in charge of
keying off Ute function code requested by the calling process and getting
control to the proper subroutine . The dispatcher may also build a stack frame
and set up registers for use by the subroutine . The subroutines themselves are
trap handler specific.

There are two ways to return from a trap handler:

• Each subroutine can return to the calling process
• Each subroutine can return to the dispatcher that will , in turn , return to

the calling process . ·

The second method is preferred because it allows the subroutine to be more
modular . The most important concern related to returning from a trap handler ,
though , is getting the stack and registers restored . When returning from a trap
handler , control goes directly to the user ; it does not go through the kernel .
Therefore , it is important to restore all registers and the stack pointer before
returning to the calling process .

NOTE: While in a trap handler, register a6 points to the trap handler's static
storage , not the calling process ' static storage .

The calling of the trap terminate code has yet to be implemented . This code
may eventually get called when a process finishes using a trap handler . For
now , this code is never executed .

OS-9 Training and Education

Trap /nit Code

Trap
/nit Code

Trap
Handling

Code

Trap
Term/note

Code

Traps- 3

OS-9 Trap Handlers Sequence of Events

The following sequence of events occurs when a process uses a trap handler.
Assume the process is test and the trap handler is mytrap.

(i) Test starts running.

<2> Test executes the F$Tlink system call to install the trap handler:

TrapName: dc.b "mytrap".O

move.l #5.dO
move. 1 #0. dl

set trap vector number
no extra memory for trap handler
move pointer to trap name into aO
install the trap handler

lea TrapName(a6). aO
os9 FSTL ink

@ The kernel associates mytrap with vector #5 of tesf s trap vector table .

@ The kernel calls the trap init portion of the trap handler with the
following register usage and stack frame:

dO.w:
d1 .I:

d2-d7:
aO:
a1:
a2:
a3-a5:
a6:
a7: ·

Vector on which the trap handler was installed.
Additional static storage allocated for trap handler
(optional) .
User's registers at the time of the F$Tlink system call.
Trap handler module name pointer (updated).
Trap handler execution entry point.
Trap handler module pointer .
User's registers at the time of the call.
Static storage base address.
Stack pointer to the following stack frame:

a7 __ ,...,► ··.u-.r,s a6 Reglst~~ .

~ Mytrap performs any necessary initialization, restores the caller's a6
register, and returns the following:

movea. l (sp) , a6
lea 8(sp),sp
rts

OS-9 Training and Education

restore user's a6 register
position return address
return from trap init portion of

· the trap handler

Sequence of
Events

Traps-4

OS-9 Trap Handlers Sequence of Events

® Test executes for some time and calls the trap handler:

tcall s.o call the trap handler on vector 5
with function code 0

The kernel catches the trap exception and dispatches control to the
trap handler's trap entry point with the follm,ving stack frame and
register usage:

d0-d7:
a0-a5:
a6:
a7:

User's registers at the time of the trap.
User's registers at the time of the trap.
Pointer to the trap handler's static storage.
Pointer to the following stack frame:

·,'3:[:tfietum Address·'::.~::

~ ..

.. itlJlpve~ · tune-code
' •. . .. ~ . ·- :

a7 ----•► '-.~ser's a6 R~g~ter\\
:•::•:

(/) Mytrap dispatches the call based on the function code passed in U1e
stack frame:

cmpi .w fll,2(sp)
bgt.s TooHigh
beq.s Subl
bra.s SubO

compare function code to l
if code is too large ...
if code - 1
if code - O ...

<B) The subroutines perform their respective tasks and return to the
caller:

Subl: add.l dO.d

move.1 (sp),a6
addq //8 . sp
rts

add dO to dl with result in dl
(arbitrary task)
restore user·s a6 register
position return address
return back to the user

<ID When the process terminates , the associated trap handler static
storage is deallocated.

OS-9 Training and Education Traps- 5

Miscellaneous Programming Concerns

When a process uses a trap handler , the process must install the trap handler
on a vector. A process may use a total of 16 trap vectors. Three of these vectors
are used by existing features of OS-9:

• Vector O is used by the kernel.

• Vector 13 is used by the math trap handler .

• Vector 15 is used by the cio trap handler .

The other 13 vectors are free for installation of user trap handlers .

OS-9 Training and Education

Trap Vector
Usage

Traps-6

OS-9 Trap Handlers System-State Version 2.2 Trap Handlers

Trap handlers normally run in user state . Creating a system-state trap handler
is the best way for a user-state pro cess to perform some activities in system
state . A system-state trap handler is constructed like a user-state trap handler ,
but it has a different module header and returning mechanism . In order to
signal to the kernel that the trap handler needs to run in system state , the
attributes / revision word in the module header must be defined as follows:

Attr_Rev : equ ((SupStat+ReEnt)< <B)+Rev * re-ent is optional

The entry point stack frames are slightly different for a system-state trap
handler as well . Each frame has an additional word just before the return
address that contains an image of the status register as it should be restored
before returning to the calling process . The following are the stack frames:

__ ::)'.=:-Return. Address<:::·
...... . . : ,•

··::·•:··: , .· ... , .. : ·.·····•,•"••

F$TUnk Stack Frame:

...... -:-.-: ... : :., ... : .. -.-.-.-.-:;_.;;,;_ .-: ::.:::::~;.-_.:.;::_._._.::

a1 a A::M~r;~:;~,;;~~i~,,-Ni}

Trap #x Stack Frame:)l:~i,;t:iliiftl
t-------+-----,

:,}g~ij;~fiif ,!.:~~i:~:~~-~
■1 --~ r;;~~~~:,:;l'.''.~;ii:;:r:,~:;r

This difference in the stack frames changes the way the routines return from the
trap handler . Instead of rts, rte should be used to restore both the pc and the sr .
The programmer should also be aware of system-state programming concerns
in general .

NOTE: For Version 2.3 of OS-9, the system-state trap handler s use the same
diagrams as the user-state trap handlers .

OS-9 Training and Education

System-State
Version 2.2

Trap Handlers

Traps- 7

OS-9 Trap Hand,.rs System-State Version 2.2 Trap Handlers

The following is source code for an example trap handler and test program :

This is the trap handler:

nam Trap Handler
ttl Example trap handling module
use defsfil e

Type equ (TrapLib<<S)+objct
Revs equ ReEnt<<S

psect traphand.Type,Revs,0,0.TrapEnt
dc.1 Traplnit initialization entry point
dc.1 TrapTerm termination entry point

*** * Traplnit:
* Passed:
* dl. 1 -
* d2-d7 -
*
*
*

(aO) -
(al) -
(a2) -

* a3-a5 -
* (a6) -
* (a7) -

*
*
*
*
*
*

initialize the trap handler
dO.w - User trap number

(optional) additional static storage
caller's registers at the time of the trap

module name
trap handler execution entry point
trap module pointer
caller's registers

pointer to static storage for trap handler
pointer to trap init stack frame

* Returns: (aO) - updated trap handler name pointer
execution entry point * (al) -

* (a2) - trap module pointer
* cc - carry set. dl .w - error code if error
Traplnit : movem.1 (a7).a6

addq.1 fl8.a7
restore a6
take other stuff off the stack

rts return to caller

OS-9 Training and Education
Traps - B

OS-9 Trap Handlers System-State Version 2.2 Trap Handlers

**
* TrapEnt: trap handler entry point
* Passed: d0-d7 - caller's registers
* a0-a5 - caller ' s registers
* a6 - pointer to the trap handler's static storage
* a7 - pointer to the following frame
*
*

*
*
* Returns: cc - carry set. dl.w - error code if error

S. dO:
S.dl:
S.aO:
S.a6:
S.func:
S.vect:
S.pc:

TrapEnt:

TraplO:
Trap20:

Trap90:

FuncErr :
Abort:

String!:
String2:

org 0
do.1 1 * this is a picture of the stack frame after the movem
do. 1 1
do. l 1
do. 1 1
do.w 1
do.w I
do. l 1

movem.l d0-dl/a0.-(a7) save registers
move.w S.func(a7),d0 get the function code
cmp.w #1.dO check it against 1
bhi.s FuncErr if it's higher then return error
beq.s TraplO if it's 1 go to TraplO
lea Stringl(pc),aO get address of stringl
bra.s Trap20 jump to writeln
lea String2(pc),a0 get address of string2
moveq #1.dO write to standard out (path l)
moveq #80,dl at most 80 characters
os9 ISWritln call the writln
bcs.s Abort if error then reflect to user
movem.1 (a7)+,dO·dl/aO/a6-a7 get our registers back
rts

move.w #1<<8+99,d2
move.w dl,S.dl+2(a7)
ori f/Carry. ccr
bra .s Trap90

return to user

return bozo error
get the error into dl.w
set the carry
go to exit

dc.b "Microware Systems Corporation".C$CR .C$LF.O
dc.b" Quality Keeps us fl".CCR,CLF,O

OS-9 Training and Education Traps - 9

OS-9 Trap Handlers System-State Version 2.2 Trap Handlers

**
* This code never gets called, but I'll return an error if the PC
* happens to get here by mistake.

TrapTerm: move.w #1<<8+199,dl return weird error
os9 F$Exit terminate caller

ends

OS-9 Training and Education Traps- 10

OS-9 Trap Handlers System-Stats Version 2.2 Trap Handlers

The following is the test program that uses the trap handler:

nam TrapTest
ttl Trap Testing Program

use defsfile

Edition equ 1
Typ_Lang equ (Prgrm«8)+0bj ct
Attr_Rev equ (ReEnt«8)+0

psect traptst_a,Typ_Lang,Attr_Rev , Edition,1024.Test

TrapNum: equ 5
TrapName: dc.b "mytrap",O

*
* install the trap handler
*
Test: moveq #TrapNum,dO

move. l flO,dl
lea TrapName(pc).aO
os9 FHL ink
bcs .s Test99

*
* call the trap handler twice
*

tcall TrapNum.O
bcs.s Test99
tcal 1 TrapNum.1
bcs.s Test99
moveq /JO ,dl

Test99: os9 F$Exit
ends

OS-9 Training and Education

get the trap number
no memory over-ride
get the name
link "mytrap" to this process
if error ...

call trap with function code
if error ...
call trap with function code
if error ...
set for error-free return
terminate this process

0

l

Traps - 11

--

Extension Modules

To enhance OS-9's capabilties, additional modules can be executed at boot
time . These e.rten•ion module• provide a convenient way to install a new
system call code or collection of system call codes (such as a system security
module). The kernel calls the modules at boot time if their names are
specified in the Extension list (the M$Extens offset) of the Init module and
the kernel can locate them.

NOTE: Extension modules may only modify the dO, d1, and ccr registers.

To include an extension module in the system, you can either burn the
module into ROM or complete the following steps:

(I) Assemble and link the module so that the final object code
appears in the /h0/CMDS/BOOTOBJS directory .

~ Create a new I.nit module :

• Change to the DEFS directory and edit the CONFIG macro
in the systype .d file. The name of the new module must
appear in the Init module extension list. For example, if
the name of the new module is mine, the following line
should be added immediately before the endm line:

Extens dc . b •os9p2 ffline~.o

NOTE: 0s9p2 is the name of the default extension module.
• Remake the Init module .

<3> Create a new bootfile:

• Change to the /h0/CMDS/BOOTOBJS directory:
chd /hO/cmds/bootobjs

• Edit the bootlist file so that the extension module name
appears in the list.

• Create a new bootfile with th e os9gen utihty . Fo, · exa mp1E>:
os9gen / hOfmt -z-bootlist

@ Reboot the system and check that the new module is operational.

The following code is an example of an 0S9P2 module .

OS-9 Training and Education Hardwa,. Interface - 1

I

\

~;--
'-._,·

...

Hardwar• lntedac•

nam
ttl

os9p2
extension module for os-9

**
* Extension to OS-9/68000
* This code adds additional system calls to the kernel
**
*
*
*
*

Edition History
date Comments

-------- ---------------------------
1 90/11/16 Created

Edition equ 1
use defsf1le

Type set (Systm«B)+Objct
Revs set ((ReEnt+SupStat)<<B)+O

psect os9p2,Type,Revs , Edition,O,os9p2
**
* os9p2 - in1t1a11zat1on for os9p2
* Passed: (a3) global storage used by calls
* (a6) - system global pointer
* (a7) - system stack pointer
* Returns: (cc) - carry set if error
* dl.w - error code if error
os9p2: movem. l d0/al-a2,-Ca7)

lea SrvcTb 1(pc). al
os9 FSSSvc
movem. l (a7)+,d0/al-a2
rts

* The service requests table
SrvcTbl: dc .w F$Coma,Coma-*-4

de. w -1

*
~

*
*

Coma - put process to sleep indefinately
Passed by System:

(a3) - address of static data (unused)
(a4) - process descriptor

by

dwj

*
*

(a~) address of caller's register stack
(a6) - system global variables

*
*
*
*
Coma:

Passed by Caller:
none
Returns:
dO. l - value returned from F$Sleep
move.l dO.-(a7)
moveq.l #0,dO
os9 F$Sleep
move.1 dO,R$dO(a5)
move. l (a7)+,d0
rts
ends

0S-9 Training and Education

Extenllon Modu,.,

os9p2

Hardware Interface - 2

Hardwor• ln,.rtoc•

r68 os9p2.a -o-./RELS/os9p2.r
168 ./RELS/os9p2.r -o- /h0/cmds/bootobjs/os9p2

r68 codes.a -o-./RELS/codes.r
attr -w /hO/lib/sys.1
rena111e /hO/lib/sys.1 sys.1.org
111erge /hO/lib/sys.1.org ./RELS/codes.r >lhO/lib/sys.1

*This file contains the user defined syste111 calls

psect codes.o.o.o.o.o

FSC0111a: equ 192

ends

#include <stdio.h>

int signal;
sighand(sig)
int sig;
(

signal - sig:
)

111ain()
(

)

int sighand():

intercept(sighand):
printf("going to sleep\n"):
coma():
printf("after the sleep\n"):

#asm

* coma binding call

coma: link aS.#0
os9 FSComa
unlk as
rts

#endasm

OS-9 Training and Education

Ext•nllon Modu,.,

maklt

codes.a

coma.c

Hardware lnt•rface - 3

Hardwor• lnt.dac•

SCF Device Driver

The Sequential Character File Manager (SCF) is a re-entrant subroutine
package for I/ 0 service requests to devices which operate on a character-by­
character basis, such as terminals , printers , and modems . SCF can handle any
number of editing functions for line-oriented operations such as backspa ce,
line delete, repeat line , auto line feed , screen pause, and return delay padding .

SCF device drivers support 1/ 0 devices that read and write data one character
at a time , such as serial devices .

Generally , the input data (usually from a keyboard) is buffered by the driver's
interrupt service routine . Each read request returns one character at a time
from the driver's circular input FIFO buffer . If the buffer is empty when the
request occurs, the driver must suspend the calling process until an input
character is received . Input interrupts are usually enabled throughout the time
the device is attached to the system . If the device is incapable of interrupt­
driver operation , the driver must poll the device until the data becomes
available . This situation has a harmful effect on real-time system performance .

The output data may or may not be buffered , depending on the physical
characteristics of the output device . If the device is a memory-mapped video
display driven by the main CPU, buffering and interrupts are not usually
needed . If the device is a serial interface , you should use buffering and
interrupts . Each write request passes a single output character to the driver .
The chara cter is placed in a circular FIFO output buffer . The output interrupt
routine takes output characters from this buff er. If the buffer is full when a
write request is made, the driver should suspend the calling process until the
buffer empties sufficiently.

Th e 1$GetStt system call (SS_Ready) and 1$SetStt system call (SS_SSig)
permit an application program to determine if the buffer contains any data . By
checking first , the program is not suspended if data is not available .

The driver may optionally handl e full input buffer conditions using
X-ON / X-OFF or similar protocols . The input routine must also handle th e
special pause , abort , and quit control charact ers. All other contr ol charact ers
(such as backspac e, line delete , etc .) are handl ed at the file man ager leve l.

OS-9 Training and Education Hardware Interface - 4

Hardware Interface

OS-9Kemel

Rle
Manager

Device
Driver

SCF Device Driver

* 1$Read, 1$Readln, 1$Wr1te, 1$Wr1tln, 1$GetStt, 1$SatStt

Kemel
Globals

Current
Process

Descriptor

pointer

Path
Table

Path
Descriptor

-____,;;;:,.~ execution path

Device
Static

Storage
Device

Hsrdwsre

"'"''"""""'"' hardware operation

--i.• system calls

·•• · ··· · ,, pointer (not for SBF READ/WRITE)

Typlcal system calls made by the driver Include (If any) :
F$Sleep , F$Event , F$CCtl , F$SRqMem, F$SRtMem

1/0 System Layout for READIWRrrE/GETSTAT/SETSTAT Routines

OS-9 Training and Education Hardware Interface • 5

Hardwore lnfe~ SCF Device Drtver

INIT lnltiallze Device and Its Static Storage Area

INPUT: (al) - address of the device descriptor module
(a2) - address of device static storage
(a4) - process descriptor pointer
(a6) - system global data pointer

READ Read Sector(s)

INPUT: d0.1 - number of contiguous sectors to read
d2.1 - disk logical sector number to read
(al) - address of path descriptor
(a2) - address of device stati c storage
(a4) - process descriptor pointer
(a5) - caller's register sta ck pointer
(a6) - system global data storage poi nter

WRITE Write Sector(s)

INPUT: d0 . 1 - number of contiguous sectors t~ write
d2 . 1 - disk logical sector number
(al) - addre s s of the path descriptor
(a2) - address of the devi ce stati c storage area
(a4) - process descriptor pointer
(a5) - caller •s register sta ck pointer
(a6) - system global data storage pointer

G ETST AT /SETST AT Get/Set Device Status

INPUT: dO.w • status code
(al) - address of the path descriptor
(a2) - address of the device stati c storage area
Ca4) - process des criptor pointer
CaS) - caller's register stack pointer
Ca6) - system global data storage pointer

TERM Terminate Device

INPUT: (al) - addre ss of the devi ce desc r ip t or modul e
(a2) - address of devi ce st atic st orage are a
(a6) - sys t em global static st orag e poin t er

OS-9 Training and Education Hardware Interface - 6

Hardwor• ln,.tfac.

The following is the pseudo-code representation for an SCF driver:

Five tasks are performed at the Init entry point to the device driver:

<D Initialize the static storage. Device drivers cannot have initialized
static storage. Therefore, the code in the Init routine must manually
initialize the static storage.

~ Initialize the hardware from the device descriptor. The driver
should read the information from the device descriptor and set up
the device accordingly. This initializes items such as interrupt level,
baud rate, parity, etc.

(3) Disable output interrupts. Because most serial chips constantly
generate output interrupts, interrupts are disabled until needed .

@ Install the device on the interrupt polling table via F$1RQ. This
specifies Ute routine to be called when an interrupt occurs on a given
sector.

<5> Enable input IRQ's. This allows you to enter characters
asynchronous to calls to ~e driver.

The read routine consists of five steps.

<D If X-OFF is received from the host and the input buffer is almost
empty:

• Output X-ON character.
• Oear input halted flag.

This code deals with the X-ON /X -OFF protocol used by 05-9
drivers. If the input was stopped for any reason, this code checks to
see if it can be resumed at full speed .

~ If a SS _ $Sig is pending, return error E$NotRdy. If a process
requests a signal to be sent on data ready , no 0U1er process may read
from U1at port. This prevents the process with the signal pending
from missing data .

(3) If the data is ready , remove a character from the input buffer. If the
data is not ready:

• Call the sleep routine to wait for an interrupt.
• Go to the read routine to pro cess the characler.

SCF O.vlc• Drtv•r

The lnff Entry
Point

The Read
Routine

0S-9 Training and Education Hardwar• Interface - 7

Hardwor• ,n,.rtac•

SCF drivers use both an input and an output buffer . The input buffer
is filled by the input IRQ routine and emptied by the driver's read
routine . The output buffer is filled by the driver's write routine and
emptied by the output interrupt routine .

@ If an error occurs during an interrupt, return error E$Read. If an
error , such as framing or parity , occurs that can only be caught by the
interrupt service routines , the driver must check for the error at the
next read posted to the driver .

~ Return without error to the file manager .

The read and write routines can both call the sleep routine . The file manager
cannot call this routine . This routine consists of three steps:

<D Tell the IRQ routine to send a signal when an interrupt occurs .

Q) Sleep until a signal is received: sleep(O).

<3> If a fatal signal is received or the process is condemned , the routine
should return to the file manager . Otherwise, the routine should
return to the caller .

The driver sleeps until an interrupt occurs which sends a signal to
the driver and wakes it up . If a fatal signal is received or the process
is condemned in the meantime , this routine passes control back to
the file manager .

The write routine consists of four steps :

<D If there is no more room for data in the output buffer :

• Call the sleep routine to wait for room .
, • Go to the write routine to finish the write request .

If the output IRQ routine cannot keep up with the driver , the driver
must sleep and wait for it .

<2> Place the character in the output buffer . The output interrupt routine
removes the character from the buffer and pla ces it in the chip .

<3> If the output is not halted and the buffer wa s empty , enable output
interrupts .

© Return to file manager .

The Sleep
Routine

The Write
Routine

OS-9 Training and Education Hardware lntertac. - 8

The GetStat routine consists of a single switch procedur e: Switch(code) . Code
may be one of the following :

• Case SS_Ready : code returns the number of bytes in the input
buffer .

• Case SS_EOF : procedure returns without error.
• By default , an Unknown Service Error (E$UnkSvc) is returned .

The SetStat routine consists of a single switch procedure : Swltch(code) . Code
may be one of the following:

• Case SS_SSig :
• H SS_SSig is already pending , return E$NotRdy .
• H the data is already available , send the requested signal .
• If the data is not available , save the information . This allows the

interrupt routine to send the signal .
• Return to the file manager .

• Case SS_Relea :
• Disable sending of signals .
• Return to the file manager.

• By default , error E$UnkSvc is returned .

The terminate routine consists of three steps:

<D Wait for any pending output . If Ute driver places something in the
output device and U1e process closes the device , the output is lost if
the driver terminates before the output is complete .

<2l Disable all interrupts from the chip .

a> Remove the device from the interrupt polling table via F$1RQ.

SCF Device Drtver

The GetSfat
Routine

The Setstat
Routine

The
Terminate

Routine

OS-9 Training and Education Hardware Interface - 9

n,e interrupt routine consists of two steps: Interrupt

<D Ensure that the interrupt belongs to the device. Because QS.9 allows
multiple interrupt service routines on one vector, each IRQ routine
must determine if the device it's responsible for generated the
interrupt. If the interrupt does not belong to the device , return cany
set .

a> Switch (interrupt type)
• Input:

• Switch (input character); input character may be:
• Case NULL = break : no further checks .
• Case V_INTR = send S$1ntrpt to V_LPROC .
• Case V_QUIT = send S$Abort to V_LPROC.
• Case V_PCHR = set V_PAUS in statics .
• Case V _XON = mark output resumed .

• If there is something to output, enable output
interrupts.

• Return from interrupt.
• Case V_XOFF = disable output interrupts

• Mark output halted
• Return from interrupt

• By default , place the input char in the input buffer.
• End switch .
• If a buffer overrun occurs, mark the error in the device

driver statistics .
• If SS _ SSig pending:

• Send signal to the process.
• · Return from interrupt .

• If the buffer is almost full, cause device to receive X-OFF.
• Go to the WakeUp routine.

• Output:
• If X-OFF or X-ON is to be sent:

• Send character and mark it as sent .
• Return from interrupt .

• Remove the character from the driver's buffer.
• Place the character in the hardware 's output register.
• If the output buffer is empty , disable the output interrupts.
• Go to the WakeUp routine .

End switch .

The WakeUp routine consists of two ~teps:

<D If the driver is sleeping , send an S$Wake signal to the driver .

<2> Return from interrupt.

The WakeUp
Routine

OS-9 Training and Education Hardware lntetface - 10

Hardwar• ln,.rfac.

RBF-Style Driver

The Random Block Ftle Manager (RBF) is a re-entrant subroutine package for
1/ 0 service requests to random-access devices . RBF can handle any number or
type of such devices simultaneously (such as large hard disk systems, small
floppy systems , RAM disk systems , etc.) and is respons ible for maintaining the
logical file structure .

RBF reads and writes in 256-byte logical sectors . The file manager handles all
file system processing and passes the driver a starting logical sector number
(ISN), a sector count, and the address of the data buffer for each read or write
operation .

The physical sector size of the media is assumed to be 256 bytes . If other
physical sizes are used , it is the device driver's responsibility to translate and
deblock the RBF LSNs into the media 's lSNs . For example , if PD_SSlze is set
to 512 and a read request of 8 sectors at LSN 4 is made , the driver should
translate the operation to a read of 4 sectors at LSN 2.

Read and write calls to the driver initiate the sector read / write operations and,
if required , a prior seek operation .

If the controller cannot be interrupt-driven , it must wait until the media is
ready , and then transfer Ute data by polling . If possible , you should avoid disk
controllers that cannot be interrupt-driven . They cause the driver to dominate
the system a>U while disk 1/0 is in progress .

For interrupt-<lriven systems, the driver initiates the 1/0 operations and
suspends itself (F$Sleep or F$Event) until the interrupt arrives . The interrupt
service routine then services the interrupt and uwakes up" the driver .

NOTE: If the driver is awakened by a signal (a keyboard abort for example)
while waiting for the 1/ 0 interrupt to occur, it should suspend itself again until
the 1/ 0 interrupt has occurred . This is because many read / write calls to a driv­
er are made by RBF on behalf of itself (for example , in directory searching or
bitmap updating) . When a signal causes a process to terminate , RBF deter­
mines the appropriate time to return to the kernel. Failure to enforce the l/ 0
interrupt completion may result in "locked " disks or corrupted med ia.

If OMA (Direct Memory Access) hardwar e suppor t is availab le, I/0
performance increases dramaticall y because the driver does not have to mcwe
the data between memory and U1e controller .

OS-9 Training and Education Hardware Interface - 11

Hardware Interface

When the driver reads sector zero, it should copy the first 21 bytes of the sector
into the drive table (PD_DTB) associated with the logical unit. Sector zero of
the disk media has format information recorded by the fonnat utility. This
information allows the driver to determine the actual format of the media and
to compare the device physical capabilities specified in the path descriptor
options with the media format. This allows the driver to adapt its operation for
reading and writing multiple formats in one physical drive. For example, a
floppy drive that can read/write double-sided, double-density disks can be
made to operate with single-sided or single-density media.

RBF always reads sector zero of the media when a file is opened. Many RBF
drivers provide caching of sector zero to improve the performance of 1$0pen
calls by RBF. This function is generally associated with media that is non­
removable (such as hard disks). When a hard disk driver reads sector zero, it
updates the drive table and copies the full sector zero into a local buffer . The
state of the buffered sector for the unit is recorded in the logical unit drive table
variables V_ZeroRd and V_ScZero. This enables the driver to return sector
zero data on subsequent calls by RBF without accessing the disk . Removable
media should not have sector zero buffered unless the driver is capable of
automatically detecting Ute media removal (for example, by an interrupt) .

GetStat calls to RBF devices are generally not seen by the driver. The majority
of RBF GetStat calls are handled by RBF itself . Most RBF drivers ignore all
GetStat calls.

SetStat calls to the driver are generally made for formatting operations (for
example, restore head, write track) and sequencing down the disk (for
example, head parking). Most RBF drivers ignore all otl1er SetStat calls.

The INIT and TERM routines of RBF drivers are called directly by the kernel
when the device is attached and detached . Typically, the INIT routine only
performs controller-specific initiaJiz:ation such as adding the controller to the
IRQ polling table, setting default values in the drive tables, and initializing the
controller hardware interface.

NOTE: The INIT routine generally does not perform initialization of the logical
units attached to the controller (such as the disk parameter definitions for SCSI
drives). This type of initialization should normally be performed when the first
Read / Write / GetStat / SetStat call is made to U,e unit .

The TERM routine typically disables U,e device 's interrupts , if required, and
removes the controller from the IRQ polling table.

OS-9 Training and Education Hardware Interface - 12

Hardwor• lnterfoc•

The following is pseudo code for an RBF style driver :

The lnit routine consists of four steps :

<D Initialize the static storage . You must manually initialize the static
storage because device drivers cannot have initialized static storage .

(2) Initialize the drive -tables with "fake values ." This initializes the
controller enough to get to sector zero to read the real information

· from the media .

(1) Reset the hardware. Get the hardware in some known state to allow
subsequent calls to the Read and Write routines to work properly .

® Install the interrupt service routine on the interrupt polling table via
F$1RQ.

The read routine consists of five steps:

<D If the controller is not initialized , initialize it .

(2) If not reading sector zero :

• Read the sectors into PD_BUF from the path descriptor.
• Return to the file manager with any errors that occurred .

The PD_BUF field of an RBF path descriptor points to an area of
memory that the driver should use as a buffer .

<1> If sector zerb is not already buffered :

• Read sector zero into the sector zero buffer.
• Update drive table to reflect information from the media .

Most drivers buffer sector zero because RBF makes multiple requests
to it .

® Move the sector zero buffer to PD_BUF from the path descriptor.

<5> Return to the file manager .

RBF-Style Driver

The /nff
Routine

The Read
Routine

OS-9 Training and Education Hardware Interface - 13

Hardware lntertoc.

The Write routine consists of three steps:

<D If writing to sector zero and the format disable bit is set, return with
a write error (E$Wrlte). A process is not allowed to write to sector
zero unless the disk is allowed to be formatted .

~ Write Ute sectors to the disk.

~ If sector zero was written, mark the sector zero drive table as invalid.
The next read of sector zero validates the buffer and the drive table .

The GetStat routine returns an unknown service request error (E$UnkSvc).
There are no valid GetStats in an RBF driver.

The SetStat routine is switch(code). Code may be any of-the following cases :

• CaseSS_Wfrk:

• If format is disabled, return the format error E$Format.
• If the controller is not initialized, initialize it .
• Write track buffer to disk.
• If a seek error occurs, return a seek error (E$Seek).
• Return without error. If a non-seek error occurs, the driver still

exits without error. The verification stage of the format should
catch Ute other types of errors.

• Case SS _Reset:

• If the controller is not initialized, initialize it.
• Restore the heads to sector zero .

• The Unknown Service Error (E$UnkSvc) is returned by default.

The terminate routine consists of two steps:

<D Reset the controller to disable future interrupts .

(2) Remove the device from the interrupt polling table via F$IRQ .

RBF-Slyle Driver

1he Write
Routine

The Getstat
Routine

111• Setstat
Routine

Jhe
Terminate

Routine

OS-9 Training and Education Hardware Interface - 14

Hardwor• ln,.tface

The interrupt routine consists of two steps :

<D Signal interrupt's occurrence to driver by clearing V_WAKE. When
the driver wakes up, the driver verifies that the interrupt service
routine woke it up .

~ If the driver is sleeping (waiting for an interrupt) , send a wake up
signal to the driver ($$Wake). The driver should be sleeping every
time an interrupt occurs . If the driver is not sleeping , a signal should
not be sent.

RIIF-Sfyh, Drlv•r

The Interrupt
Routine

OS-9 Training and Education Hardwar• ln,.tfac• - 15

Hardware lnterfac•

ROM-Based OS-9/68000

The following is an explanation of how you can create a ROM based 05-9
system. You must have access to the equivalent of a Part-Pak because you need
to make a new boot EPROM, a.new Sysgo, and a new !nit module. The location
of the modules must be known by the boot EPROM because the modules which
make 05-9 are not loaded from a boot disk. The Memory Search List, located
in the DEFS/systype.d file, supplies Ute boot EPROM with Ulis information.

The following shows an example of a search list for a ROM-based system:

Hem.Beg equ $02000000
Hem.End equ $02100000
Spc.Beg equ $00000000
Spc.End equ $00020000

Beginning of memory
Normal end of memory

Start of ROM searclr area
End of ROM seard, area

**
* Memory search definitions

HemDefs
dc.l
de. l
dc.1
de. 1

edm

macro
Hem. Beg, Hem. End Normal RAM boundaries
0 Retfuircd to end RAM defit1itions
Spc. Beg, Spc . End ROM boundaries (seard1 hue for modules)
0, 0 , 0 , 0 , 0 , 0 • 0. 0 , 0 • 0 • 0 , 0 , 0 , 0, Fru bytes for pate/ring

This example shows a system with normal system RAM from $02000000 to
$02100000 and ROM from $00000000 to $00020000. The ROM area can also
contain the boot EPROM code (for example, ROM debugger, Syslnit, etc.) as
well as the 05-9 system modules. The ROM search routine skips over non-
05-9 modules (such as the boot EPROM code) and locates any valid modules
in the ROM.

OS-9 Training and Education Hardware Interface - 16

_,...

Hardwar• lntelfac• ROM-Based OS-9/68000

You can also have discontinuous RAM:

Hem.Beg equ
Hem.End equ
Hem.Begl equ
Mem.Endl equ
Spe.Beg equ
Spe.End equ

$02000000
$02100000
$03000000
$03100000
$00000000
$00020000

Nomuzf beginni11g of memory
Normal end of memory

Beginning of disco11tinuous memory
End of discontinuous memory

Start of ROM seard, area
Eud of ROM seard1 area

**
* Memory search definitions

macro HemOefs
de.1
de. 1
de. 1
dc.1

Hem. Beg. Hem. End. Hem. Begl. Hem. Endl Normal RAM boundaries
0 Required to end RAM defitiitions
Spc. Beg. Spc. End ROM boundaries (seard, here for modules)

edm
0 • 0 • 0. 0 • 0. 0 • 0. 0 • 0. 0 • 0 • 0. 0 • 0 • Free bytes for patching

This example shows a system with system RAM from $02000000 to $02100000
and from $03000000 to $03100000 and ROM from $00000000 to $00020000.

NOTE: These definitions must exactly match the target system.

You should also make changes to the systype.d file to indicate to the OS-9
kernel that there is no startup disk drive. Do this by changing the SysDev line
in the CONFIG macro to be null. This is shown here:

**
* Configuration module constants
* used only by the Init module

CONFIG macro
"Heur1kon HK68/V20".0 HainFram dc.b

SysStart de.b "sysgo".O Name of initiJII module to execute (version 2.4)
-or-

SysStart dc.b "sysgo_nodisk".O (version 2.3)

SysParam dc.b "".CSCR.O Parameters to initial process
SysDev set 0 No initial system disk
ConsolNm dc.b "/Term".O Console terminal pathl ist
ClockNm dc.b "mk68901",0 Cl,xk 111od11fe nnme
Extens dc.b "os9p2",0 Exfr.11!'ht/l 1111xf11/c!'
endm

NOTE: For version 2.2 of the operating system, the SysDev line should be:

SysDev de .b '"'. 0 No initial system disk

'(

OS-9 Training and Education Hardware Interface - 17

Hardwor• lnfertoc. ROM-BaHd 0S-9/6«)()()

Also note that the startup module name is changed from the normal sysgo to
sysgo_nodisk. The source code for sysgo_nodisk is included with the Port Pak
and is located in the SYSMODS directory . With these changes made to the
systype.d file, the modules which you must modify to make a ROM based
system can be remade. You should execute the following commands:

<D Change your current data directory to /h0/ROM :

chd / hO/rom

~ Merge everything into one file with the make utility:
•ake debug -u

The object code will be located in ROM/RELS/debug .

a> Change your current data directory to /h0/SYSMODS :
chd /hO/ sysmods

® Use the make utility:

make sysgo_nodisk init -u

The object code is located in CMDS/BOOTOBJS/sysgo_nodisk and
CMDS/BOOTOBJS/init.

You should also make a new boot EPROM using the object code file
ROM/RELS/debug. Burn the necessary ~9 modules into the EPROM . An
example list of modules might be :

debug
Kernel
init
111k68901
scf
pipeman
nul 1
nil
sc68901
pipe
term
sysgo
shell
ci o
any desired applications

11,e dock moilult

the serial driver

This system could only run the shell . Any other utiliti es that ar e to be used
must also be in the ROM Remember that standard 05- 9 utilitie s require the cio
module .

OS-9 Training and Education Hardware Interface - 18

Hardwar• lnt•rfac•

Porting OS-9 to a New 68000 System

Before discussing how OS-9 is ported to a new system, you should understand
two terms: the host system and the target system.

The host system is the development system used to edit and re-assemble OS-9.
The host system can be any one of the following systems:

• A 68000 family-based computer with 5121< RAM and OS-9 / 68000
• AV AX computer running Unix B5D4.2, Unix 4.3, or VMS 4.6
• An Apollo computer running Domain 10.x
• A Sun computer running Sun OS 3.x
• An HP9000 computer running HP-UX 6.3
• A Motorola Delta Box computer running MV68 Unix System V

The target system is the system on which you intend to install OS-9. The target
system should consist of the following hardware:

• A 68000 family CPU
• At least 5121< RAM
• At least 321< ROM capacity. Alternatively, you can use an emulator

with 321< of overlay memory.
• Two serial l/0 ports; one for a terminal and one for commwtlcations

with the host system.

The 321< ROM is for convenience in bringing up OS-9. If the system is disk­
based, the eventual target system can use as little as 8K for a boot ROM. The
same is true of the two serial ports; they are not required after the porting
process.

The target system may also be equipped with any other 1/0 devices which
must eventually be supported by OS-9, although U1ey will not be used in the
initial installation steps.

You should hook up the serial ports that link the host to the target system. If
you have some way to do it (for example, if you have existing software that
already runs on your target system), test the communications link at this time .

OS-9 Training and Education Hardwar• lnt•dace - 19

Hardware Interface Porting OS-9 to a New 68000 Syltem

The following figure shows the typical interconnection between the host and
the target systems.

Terminal
RS-232 Hoat

System

RS-232

Target System

PROM
Programmer

Figure 1: Typical Host and Target Interconnection
A prognunmer CM use a terminal and work through a host system to set up 11nd debug
a target system. Once the target system has been debugged , terminals may be attached
to it and it may be used like any other OS-9 system.

The following steps provide you with an overview of the P,Orting operation:

© Preparation
Before porting 05-9 to a new 68000 system, you should thoroughly
know your hardware, software, and documentation. The more
familiar you are with these, the easier your task will be. The
following are some tips to follow before porting OS-9 to a new
system: ·

• Prepare the target system hardware. Before attempting to
install 05-9, make sure the hardware boots. H the target
system is an untested prototype, use the assembler to
make a simple, stand-alone test ROM that just prints a
message on a terminal to verify basic hardware
functionality.

• Check the distribution package. Familiarize yourself with
the contents of the distribution package provided by
Microware. Also verify that the distribution package is
complete and that it is the correct version for the type of
host system you are using .

OS-9 Training and Education Hardware Interface - 20

Hardware Interface Porting OS-9 to a New 68000 Sy,,em

<2> Modify the Systype.d FIie
Target system , hardware-dependent definitions should be concen­
trated in the systype.d file. This includes basic memory map
information, exception vector methods (for example, vectors in RAM
or ROM), I/0 device controller memory addresses and initialization
data, etc. Review and edit the systype.d file before you attempt to re­
assemble any other routines .

· Systype.d is included in the assembly of many other source files by
the assembler's use directive. Your first editing job is to make a new
systype.d file that describes your target system as closely as possible
using the sample file provided in the distribution package. Some
definitions are not used wttil later in the installation process, but it is
recommended to set up everything in advance. Similarly , some of
the definitions may not apply to your target system .

<3> Write/Obtain a Console l/0 Driver
You must create an OS-9 console I/0 driver module for the console
device . Microware may have an existing driver based on the same
device your target system uses. If this is the case, little or no
adaptation is required.

Otherwise, you must create a new console 1/0 driver module . It is
easiest to modify an existing Microware-supplied serial driver.
Refer to the OS-9 Technical Manual and the sample source files
supplied for guidance.

A device de~criptor module for the serial port is also needed. The
console device driver module name is Term by convention . If the
system has other identical serial 1/0 devices , tltey can be used if you
make additional device descriptor modules for them. You should
edit the standard makefile to suit the individual configuration
needed to make these files.

© Modify the Sys/nit.a FIie
The sysinit.a file performs any special hardware initialization that
your system may require after a reset or system re-boot occurs . It
also determines whether the ROM debugger is enabled or not.

0S-9 Training and Education Hardware Interface - 21

,...

--

Device Driver De1ct1ptor, Porting OS-9 to a New 68000 Sy,tem

<5> Test Boot the System to the RomBug: Prompt
To test boot the system , use the make utility to automatically
assemble and link the component files to create a boot / debug ROM
binary object file. Type the following command from the OSK/ROM
file:

$ make debug

This command creates a ROM image that has a dummy boot and
debugger with talk-through and download capabilities . The created
binary output file is called debug.

If problems occur when you run make, check the following :

• Verify that systype.d is configured correctly .
• Verify that the "makefile " has the correct names of your

customized files.

After the files are assembled and linked properly , make a ROM or
load the code into the emulator overlay in memory .

NOTE: The linker output is a pure binary file. If your PROM
programmer or emulator requires $-records , use the binex utility to
convert the data .

If your PROM programmer canno t bum more than one PROM at a
time and your system has the ROMs addressed as 16-bit or 32-bit
wide memory , use the romspllt utility to convert the ROM object
image into ~•s bit wide" files.

 Write/Obtain a Serial Driver
You must create an OS-9 serial driver module. Microware may have
an existing driver based on the same device your target system uses.
If this is the case, little or no adaptation is required .

Otherwise , you must create a new serial driver module. It is easiest
to modify an existing Microware-supplied serial driver . Refer to the
OS-9 Technical Manual and the sample source files supplied for
guidance .

(!) Test Boot Up to the Shell Prompt

OS-9 Training and Education Hardware Interface - 22

'\

Hardwar« lntetfac• Porting OS-9 too New 68000 System

.....__._..,,

<I> Write ,i RBF Driver, • Clock Driver, and a Disk Boot Drlvflr
You must create an 05-9 RBF driver module , a clock driver module ,
and a disk ~ boot driver module . Microware may have existing
drivers based on the same devices your target system uses. If this is
the case, little or no adaptation is required .

Otherwise, you must create the new modules. It is easiest to modify
the existing Microware-supplied se~ drivers . Refer to U1e OS-9
Techr,/csl IJIBnual and the sample sourc e files supplied for
guidance .

<ID Test thti New System
The quickes t DMic test of a new installation is to start using the
system immediately . This usually reveals major problems if they
exist . ·

~ Take a Bntlllc
Your new system should be up and running . You should now be
ready for a break!

OS-9 TrOlnlng and Educallon Hardware Interface - 23

